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Solid materials are classified on the basis of arrangement of atoms within the solid. There are two

main categories: Materials in which atoms are placed randomly(lack regular arrangement) in a long

range are called amorphous. Examples are pitch, plastic. Materials in which atoms are placed in a

high ordered structure(regular and regular pattern) in a long range are called crystalline. Examples

are diamond, quartz. Polycrystalline materials are materials with a high degree of short-range order

and  no  long-range  order.  These  materials  consist  of  small  crystalline  regions  with  random

orientation called grains, separated by grain boundaries. Crystals are categorized by their crystal

structure and the underlying lattice. While some crystals have a single atom placed at each lattice

point,  most  crystals  have  a  combination  of  atoms  associated  with  each  lattice  point.  This

combination of atoms is also called the basis. OR we can say that basis is an aggregate of atoms

occupying space point's position. The classification of lattices, the common semi-conductor crystal

structures and the growth of single-crystal semiconductors are discussed in the following sections. 

Bravais lattices.

In 1848 A. Bravis, the French Crystallographer proved that there are only 14 space lattices in total,

which are required to describe all possible arrangements of points in space. These are the distinct

lattice types, which when repeated can fill the whole space. It is subjected to the condition that each

lattice point has exactly identical environment. The lattice can therefore be generated by three unit

vectors,              and a set of integers k, l and m so that each lattice , point, identified by   a vector

can be obtained from:                                                             

The construction of the lattice points based on a set of unit vectors is illustrated by Figure

Figure: The construction of lattice points using unit vectors.

In two dimensions,  there  are  five  distinct  Bravais  lattices,  while  in  three dimensions  there are



fourteen—broadly classified into seven types known as seven crystal systems or classes. The 

lattices in two dimensions are the square lattice, the rectangular lattice, the centered rectangular

lattice, the hexagonal lattice and the oblique lattice as shown in Figure:

Figure: The five Bravais lattices of two-dimensional crystals: (a) cubic, (b) rectangular, (c) centered 

rectangular, (d) hexagonal and (e) oblique.

 It is customary to organize these lattices in groups which have the same symmetry. An example is

the rectangular and the centered rectangular lattice. As can be seen on the figure, all the lattice

points  of  the  rectangular  lattice  can  be  obtained by a  combination  of  the  lattice  vectors  .  The

centered rectangular lattice can be constructed in two ways. It can be obtained by starting with the

same lattice vectors as those of the rectangular lattice and then adding an additional atom at the

center of each rectangle in the lattice. This approach is illustrated by Figure (c). The lattice vectors 

generate the traditional unit cell and the center atom is obtained by attaching two lattice points to

every lattice point of the traditional unit cell. The alternate approach is to define a new set of lattice

vectors, one identical to and another starting from the same origin and ending on the center atom.

These  lattice  vectors  generate  the  so-  called  primitive  cell  and  directly  define  the  centered

rectangular lattice.

These lattices are listed in Table below a1 and a 2 are the magnitudes of the unit vectors and α is the

angle between them.



 

The  same  approach  is  used  for  lattices  in  three  dimensions.  The  fourteen  lattices  of  three-

dimensional crystals are classified as shown in Table below where a1 , a2 and a3 are the magnitudes

of the unit vectors defining the traditional unit cell and α, β and γ are the angles between these unit

vectors. 

Table: Bravais lattices of three-dimensional crystals.

The cubic lattices are an important subset of these fourteen Bravais lattices since a large number of 

semiconductors are cubic. The three cubic Bravais lattices are the simple cubic lattice, the body-

centered cubic lattice and the face-centered cubic lattice as shown in Figure below. Since all unit

vectors identifying the traditional unit cell have the same size, the crystal structure is completely

defined by a single number. This number is the lattice constant, a.

Figure: The simple cubic (a), the body-centered cubic (b) and the face centered cubic (c) lattice.

Reciprocal lattice.

We know that there exist  many sets  of planes in a crystal  lattice with different orientation and

spacings. If we draw from a common origin, normals to all set of planes, length of each normal

being proportional to the reciprocal of the interplanar spacing of the corresponding set, then the end

points of the normals form a lattice known as reciprocal lattice. Each point in the reciprocal lattice

preserves the characteristics of the set of the planes. Its direction with respect the origin represents 

the orientation of the plane and its distance from the origin represents the interplanar spacing of the

planes. If            are the basis vectors of a direct lattice, then the basis vectors             of the



 

reciprocal lattice are defined as:

                                 ,                                      ,        

The common denominator  in  each case represents the volume of  the direct  crystal  lattice.  The

vectors       and     have the dimensions of length. And the vectors           and    have the dimensions

of               . 

Properties of Reciprocal lattice.

Every  crystal  structure  has  two  lattices  associated  with  it--  The  Direct  crystal  lattice  and  the

Reciprocal lattice. Reciprocal lattice has following properties:

1. Volume of a unit cell of reciprocal lattice is inversely proportional to the volume of unit cell of

the direct lattice.

2. Magnitude of every reciprocal lattice vector is inversely proportional to the interplanar spacing of

the corresponding set of lattice planes.

3. Every vector of the reciprocal lattice is normal to a set of lattice planes of the crystal lattice.

The concept of reciprocal is useful in understanding the X-ray diffraction phenomena in a very

simple  way. And  also  provides  ample  understanding of  electron  behavior  in  a  periodic  crystal

lattice.

  

The density of states (DOS) is essentially the number of different states at a particular energy level

that electrons are allowed to occupy, i.e. the number of electron states per unit volume per unit

energy.  Bulk  properties  such  as  specific  heat,  paramagnetic  susceptibility,  and  other  transport

phenomena of conductive solids depend on this function. DOS calculations allow one to determine

the general distribution of states as a function of energy and can also determine the spacing between

energy bands in semi-conductors.

Before we get involved in the derivation of the DOS of electrons in a material, it may be easier to

first consider just an elastic wave propagating through a solid. Elastic waves are in reference to the

lattice vibrations of a solid comprised of discrete atoms. Though, when the wavelength is very long,

the atomic nature of the solid can be ignored and we can treat the material as a continuous medium.

We know that 1-D wave equation is given by:

solution for a propagating plane wave:                                   …........(1)

Where the terms have their usual meanings.

In equation(1), the temporal factor          , can be omitted because it is not relevant to the derivation

of the DOS. So now we will use the solution:

Density of States of Continuous Medium



                                                                                                             ….........(2)

To begin, we must apply some type of boundary conditions to the system. The easiest way to do this

is to consider a periodic boundary condition. With a periodic boundary condition we can imagine

our system having two ends, one being the origin, 0, and the other, L. We now say that the origin

end is constrained in a way that it is always at the same state of oscillation as end L.

This boundary condition is represented as: 

Now we apply the boundary condition to equation (2) to get: 

Now, using Euler’s identity;

we can see that there are certain values of qL=      which satisfy the above equation. Those values

are  for any integer, n. Leaving the relation:  

If  you  choose  integer  values  for  n  and  plot

them along an axis q you get a 1-D line of points, known as modes, with a spacing of  between each

mode           .

We now have that the number of modes in an interval dq in q-space equals:

Using the dispersion relation we can find the number of modes within a frequency range dω that

lies within          .    . This number of modes in that range is represented by g(ω)dω ,where gω is

defined as the density of states.  So now we see that g(ω)dω= 

Implies that, 

Now 

Therefore, we have 



we multiply by a factor of two be cause there are modes in positive and negative q-space, and we

get the density of states for a phonon in 1-D:

2-D:

We can now derive the density of states for two dimensions. Equation(2) becomes:

Now apply the same boundary conditions as in the 1-D case:

We now consider an area for each point in q-space =(2π/L)2 and

find  the  number  of  modes  that  lie  within  a  flat  ring  with

thickness dq, a radius q and area: 

Number of modes inside interval:

Now account for transverse and longitudinal modes (multiply by a factor of 2) and set equal to

g(ω)dω We get 

Apply dispersion relation we get 

which simplifies to the 2-D result:

3-D:

We can now derive the density of states for three dimensions. Equation(2) becomes:

Apply the boundary conditions as in the 1-D case to get: 



We  now  consider  a  volume  for  each  point  in  q-space

=(2π/L)3 and  find  the  number  of  modes  that  lie  within  a

spherical  shell,  thickness  dq,  with  a  radius  q  and

volume:4/3πq3.

Number of modes inside shell:

Assuming  a  common  velocity  for  transverse  and  longitudinal  waves  we  can  account  for  one

longitudinal and two transverse modes for each value of q (multiply by a factor of 3) and set equal

to g(ω)dω:

Apply dispersion relation and let L3=V to get 

Implies that 

Specific Heat

Specific heat is mathematically represented as heat capacity per unit mass of  a substance. It is

defined as a measure of number of degrees of freedom of a system. Since the degrees of freedom

imply freedom to absorb potential or kinetic or potential energy,-- this depends on the number of

ways energy is given to the system. 

Different  systems need different  amounts  of  heat  energy to  raise their  temperature  by  a  given

temperature interval. For example, it takes 4184 joules to raise temperature of 1Kg of water by 1K.

But the same heat energy raises the temperature of 1 Kg of copper by 11 K. Thus water has large

heat capacity as compared to copper. The heat capacity at constant volume Cv is the most useful

quantity  than  the  specific  heat  at  constant  pressure  Cp  because  the  former  can  be  obtained

immediately  from  the  energy  of  the  system.  Whole  analysis  is  based  on  the  following

thermodynamic relations.

                                 dQ = dU-dW = dU-PdV 

 Then the specific heat at constant volume is 

                                                  



On the other hand, it  is easy to measure the heat capacity of solid at  constant pressure than at

constant volume. At low temperatures the difference between Cp and Cv vanishes for solids and is

only 5% at room temperature. Cv can be calculated from Cp if the volume expansion coefficient 

and the compressibility  of a material are known by applying the following relations.

                                                  

Where V is the volume of the solid.

Any theory used to calculate lattice vibration heat capacities of crystalline solids must explain two 

things: 

1.  Near room temperature, the heat capacity of  most solids is around 3k per atom (the molar heat

capacity for a solid consisting of n-atom molecules is ~3nR).  This is the well-known Dulong and

Petit law. 

2.  At low temperatures, Cv decreases, becoming zero at T=0.  Heat capacities have a temperature

dependence of the form αT3 + γT, where the T3  term arises from lattice vibrations, and the linear 

term from conduction electrons. Classical mechanics would predict Cv= 3R at all temperatures, in

violation of both experiment and the third law of thermodynamics

Einsteins theory of Specific Heat.

Einstein  treated  the  atoms  in  a  crystal  as  N  simple  harmonic  oscillators,  all  having  the  same

frequency νE . The frequency  νE depends on the strength of the restoring force acting on the atom,

i.e. the strength of the chemical bonds within the solid. Since the equation of motion for each atom

decomposes into three independent equations for the x, y and z components of displacement, and N-

atom solid is equivalent to 3N harmonic oscillators, each vibrating independently at frequency  νE .

Note that this treatment is a gross approximation, since in reality the lattice vibrations are very

complicated coupled oscillations.

The energy levels of the harmonic oscillators are given by

                                       εν = hνE (v + 1⁄2),            v = 0, 1, 2...

Assuming the oscillators are in thermal equilibrium at temperature T, the partition function for a

single oscillator is

where 

In the above, we have used the fact that

The mean energy per oscillator is then



The first term above, hν/2, is simply the zero point energy. Using the fact that energy is an extensive

property, the energy of the 3N oscillators in the N-atom solid is

The heat capacity at constant volume is therefore

θ E is the ‘Einstein temperature’, which is different for each solid, and reflects the rigidity of the

lattice. At the high temperature limit, when T >> θ  E (and x << 1), the Einstein heat capacity reduces

to Cv =3Nk, the Dulong and Petit law [prove by setting e x ~ 1+x in the denominator].

At the low temperature limit, when T << θ E(and x >> 1), C v→0 as T →0, as required by the third

law of thermodynamics. [Prove by setting e x  -1 ~ e x  in the denominator for large x].

Debye’s theory of heat capacities.

Debye improved on Einstein’s theory by treating the coupled vibrations of the solid in terms of 3N

normal modes of vibration of the whole system, each with its own frequency. The lattice vibrations

are  therefore  equivalent  to  3N  independent  harmonic  oscillators  with  these  normal  mode

frequencies.

For low frequency vibrations, defined as those for which the wavelength is much greater than the

atomic spacing, λ >> a, the crystal may be treated as a homogeneous elastic medium. The normal

modes are the frequencies of the standing waves that are possible in the medium.

Debye derived an expression for the number of modes with frequency between ν and ν+dν in such a

medium.

where V is the crystal volume and v is the propagation velocity of the wave. As outlined above, this

expression applies only to low frequency vibrations in a crystal. Debye used the approximation that

it applied to all frequencies, and introduced a maximum frequency νD (the Debye frequency) such

that there were 3N modes in total.

The Debye frequency corresponds to λ = 2a, when neighbouring atoms vibrate in anti-phase with

each other. With this approximation in place, Debye integrated over all of the frequencies to find the



internal energy of the crystal, and then calculated . The resulting expression is given

below.

Where 

The  Debye  heat  capacity  depends  only  on  the  Debye  temperature  θD.  The  integral  cannot  be

evaluated analytically, but the bracketed function is tabulated.

At high temperatures (T >> θD , xD<< 1), we may rewrite the integrand as follows:

Retaining only the x2 term in the denominator gives

To determine the low temperature limit (T << θD  , xD  >> 1), we note that the integrand tends

towards zero rapidly for large x. This allows us to replace the upper limit by ∞ and turn the integral

into astandard integral, to give

We see that the Debye heat capacity decreases as T3 at low temperatures, in agreement with

experimental observation. This is a marked improvement on Einstein’s theory.

Concept of Phonons

Phonons  are  a  quantum  mechanical  version  of  a  special  type  of vibrational  motion, known as

normal modes in classical mechanics, in which each part of a lattice oscillates with  the  same

frequency.  These  normal  modes  are  important  because,  according  to  a well-known result in

classical  mechanics,  any  arbitrary  vibrational  motion  of  a  lattice  can  be  considered  as  a

superposition of normal modes with various frequencies; in this sense, the normal modes are the



elementary vibrations of the lattice. Although normal modes are wave-like phenomena in classical

mechanics, they acquire certain particle-like properties when the lattice is analyzed using quantum

mechanics (see wave-particle duality.) They are then known as phonons.  

Lattice waves 

Consider  the  elastic  vibrations  of  a  crystal  with  one  atom  in  the  primitive  cell.  We want to

find the frequency of an elastic wave in terms of the wave vector k and the elastic constants. When

a wave propagates along the x-direction, entire planes of atoms move in phase with displacements

either parallel or perpendicular to the direction of k.  We can describe with a single co-ordinate us

 the displacement of the plane s from its equilibrium position. 

Fig.1 (Left  figure)  (Dashed  lines)  Planes  of  atoms  when  in  equilibrium.  (Solid  lines)  Planes

of  atoms  when  displaced  as  for  a  longitudinal  wave.  The  coordinate  u measures  the

displacement  of  the  planes.  (Right  figure)  Plane  of  atoms  as  displaced during passage of

transverse wave. 

For each wave vector there are three modes; one of longitudinal polarization, two of transverse

polarization. We assume that the elastic response of the crystal is a linear function of the forces. Or

the elastic  energy is  a quadratic  function of the relative displacement of any two points  in the

crystal. The forces on the plane s caused by the displacement of the plane s+p is proportional to the

difference  us+p -  us of  their displacements. For  brevity,  we  consider  only  nearest-neighbor

interactions, so that p = ±1. The total force on s comes from planes s ± 1.

Fig.2 The displacements of atoms with mass M are denoted by u s-1 , u s , and u s+1 . The repeated



distance is a in the direction of the wave vector k. The direction of u s is parallel to the direction of

the wave vector k for the longitudinal wave and is perpendicular to the direction of the wave vector

k for the transverse wave.

One Dimensional Monoatomic Lattice

For  simplicity  we  consider,  first,  a  one-dimensional  crystal  lattice  and  assume  that  the  forces

between the atoms in this lattice are proportional to relative displacements from the equilibrium

positions. 

This is known as the harmonic approximation, which holds well provided that the displacements are

small. One might think about the atoms in the lattice as interconnected by elastic springs. Therefore,

the force exerted on n-the atom in the lattice is given by

Fn = C ( un + 1 − un  ) + C ( un - 1 − un )                                               (1)

where C is the interatomic force (elastic) constant. Applying Newton’s second law to the motion of 

the n-th atom we obtain

                (2)             

where M is the mass of the atom. Note that we neglected here by the interaction of the n-th atom 

with all but its nearest neighbors. A similar equation should be written for each atom in the lattice, 

resulting in N coupled differential equations, which should be solved simultaneously (N is the total 

number of atoms in the lattice). In addition the boundary conditions applied to the end atom in the 

lattice should be taken into account.

Now let us attempt a solution of the form

                                                   (3)

where xn is the equilibrium position of the n-th atom so that x n =na. This equation represents a 

traveling wave, in which all the atoms oscillate with the same frequency ω and the same amplitude 

A and have wave vector q. Note that a solution of the form (3) is only possible because of the 

transnational symmetry of the lattice.

Now substituting Eq.(3) into Eq.(2) and canceling the common quantities (the amplitude and the

time-dependent factor) we obtain

                              (4)



This equation can be further simplified by canceling the common factor eiqna , which leads to

                          

                                           (5)

We find therefore the dispersion relation for the frequency

                                                                  (6)

which is the relationship between the frequency of vibrations and the wave vector q. This dispersion

relation have a number of important properties.

(i) Reducing to the first Brillouin zone. The frequency (6) and the displacement of the atoms (3) do 

not change when we change q by q+2π/a. This means that these solutions are physically identical. 

This allows us to set the range of independent values of q within the first Brillouin zone, i.e.

                                                                                                                            (7)

Within this range of q the ω versus q is shown in Figure below:

The maximum frequency is  . The frequency is symmetric with respect to the sign change 

in q, i.e. ω (q)= ω (-q). This is not surprising because a mode with positive q corresponds to the 

wave traveling in the lattice from the left to the right and a mode with a negative q corresponds to 

the wave traveling from the right tot the left. Since these two directions are equivalent in the lattice 

the frequency does not change with the sign change in q.

At the boundaries of the Brillouin zone q=±π/a the solution represents a standing wave

 : atoms oscillate in the opposite phases depending on whether n is even or odd. TheAt the 

boundaries of the Brillouin zone q=±π/a the solution represents a standing wave

 : atoms oscillate in the opposite phases depending on whether n is even or odd. 

The wave moves neither right nor left. 

(ii) Phase and group velocity. The phase velocity is defined by

                                                                                                                                (8)



and the group velocity by

                                                                                                                             (9)

The physical distinction between the two velocities is that vp is the velocity of the propagation of 

theplane wave, whereas the vg is the velocity of the propagation of the wave packet. The latter is the

velocity for the propagation of energy in the medium. For the particular dispersion relation (6) the 

group velocity is given by,

                                                (10)

As is seen from Eq.(10) the group velocity is zero at the edge of the zone where q=±π/a. Here the

wave is standing and therefore the transmission velocity for the energy is zero.

(iii) Long wavelength limit. The long wavelength limit implies that λ >>a. In this limit qa<<1. We 

can then expand the sine in Eq.(6) and obtain for the positive frequencies:

                                                         (11)

We see that the frequency of vibration is proportional to the wav evector. This is equivalent to the

statement that velocity is independent of frequency. In this case   

                                                            (12)

This is the velocity of sound for the one dimensional lattice which is consistent with the expression 

we obtained earlier for elastic waves.



Elastic Waves in Solids

Elasticity  is  a  solid’s  most  important  property  for  restoring  its  shape  and  volume after  the

termination of the action of the external forces applied to it,  while  for liquids and gases,  only

volume is  restored.  Therefore the medium,  whose typical feature  is  elasticity, is  referred  to  as

“elastic  medium.”  Accordingly,  elastic vibrations  are  vibrations  of  mechanical  systems,  elastic

medium,  or  its  part  that arises  under  mechanical  disturbances.  Elastic  or  acoustic  waves  are

mechanical disturbances that reproduce in an elastic medium. A partial case of acoustic waves is a

sound, which is  audible to  man;  thus the term “acoustics” (from the Gree
 “a
usti
os,” which

means “auditory”) was given to this phenomenon. In the widest sense, acoustics involves the study

of elastic waves, and in the narrowest, it is often used to define their sound range only.

Elastic  vibrations  and  acoustic  waves  are  widely  used  in  nondestructive  testing and  technical

diagnostics of materials and products, in various engineering devices and equipment. For example,

powerful  ultrasonic  vibrations  are  used  for  the  local fracture  of  brittle  high-strength  materials

(ultrasonic  crushing);  dispersion  (fine crushing  of  solid  or  liquid  bodies  in  any  medium—for

example, fats in water); coagulation (enlargement of particles of a substance, such as smo
e); and

for other purposes.  Elastic vibrations and waves are very important for the investigation of the

processes of initiation and propagation of the volume damaging and fracture of solids; this it what

has made it  possible  to use them widely in fundamental  and applied scientific  studies of these

processes from the viewpoint of fracture mechanics.

Types of Elastic Waves

Some General Ideas on Elastic Strain.

Elastic vibrations in liquids and gases are characterized by one of the following parameters: change

in pressure p or density ρ; particle shift from an equilibrium state u; vibration motion velocity v; or

shear potential χ, i.e., vibration velocity φ. It is essential to distinguish the change in pressure or

density caused by acoustic wave propagation from their statistical (average) value. All the above-

mentioned parameters are interconnected, for example: u= gradχ, v =gradφ ;

Unli
e liquids and gases, the acoustic field in a solid is of a more complicated nature, because a

solid possesses not only the volume elasticity as liquids and gases do, but also the elasticity of their

shape, i.e., shear elasticity. The concept of stress is introduced for solids instead of pressure, i.e., the

force related to a surface unit. In the mechanics of a deformed solid there are normal (tensile or

compressive) .

A Wave Equation for a Solid

It is derived by using the second Newton’s law for an elementary volume dxdydz. The difference of

forces applied to its opposite faces is equated to the product of mass and acceleration. As a result,

we get for axis x



                                            (1)

By analogy, it is possible to write the equation for axes y and z. By substituting strains instead of

stresses, the equation of wave propagation in an elastic medium is obtained:

                                             (2) 

where

                                             (3)

is  the  Laplace  operator.  The  wave equations  (2)  include  second-order  time,  and  coordinate

derivatives with different signs with respect to some variable. Using a vector analysis, the equation

of (2) type for all coordinates can be written as one expression:

                                             (4)

When μ = 0, and assuming the displacement ux  = uy   = uz  = u to be the same in all directions

(scalar), Eq. (4) is transformed to a wave equation for a liquid or a gas:

                                                       (5)

where   is the velocity of propagation of elastic waves. The same equations are valid for

other elastic values, i.e., pressure, potential, etc.



 
The density of states gives the number of allowed electron (or hole) states per volume at a 
given energy.  It can be derived from basic quantum mechanics. 
 
Electron Wavefunction 
 
The position of an electron is described by a wavefunction  zyx ,, .  The probability of 

finding the electron at a specific point (x,y,z) is given by  2
,, zyx , where total 

probability   dxdydzzyx

space
all
 2

,, is normalized to one. 

Particle in a Box 
The electrons at the bottom of a conduction band (and holes at the top of the valence 
band) behave approximately like free particles (with an effective mass) trapped in a box. 
We will consider here conduction band electrons, but the result for holes is similar. For 
our parabolic conduction band: 

  2 2

*2c

k
E E

m
   

 

 
For electrons in a rectangular volume Lx by Ly by Lz with an infinite confining potential 
((U(x,y,z)=0 inside the box and ∞ outside), the electron wavefunction  must go to zero 
on the boundaries, and takes the form of a harmonic function within the region.  The 
wavefunction solution is: 
        , , sin sin sinx y zx y z k x k y k z     (1) 

 

Density of States in Lattice



and xk , yk , and zk are the wavevectors for an electron in the x, y, and z directions. The 

real wavefunction in a solid is more complex and periodic (with the crystal lattice), but 
this is a good approximation for the parabolic regions near the band edges. 
 

 
First 4 particle in a box wavefunctions across the x direction. 

Orthogonal directions are analogous. 
 
Enforcing the boundary conditions: At x, y, or z = 0, the sine functions go to zero.  At the 
opposite boundaries of the rectangular region,   0sin xxLk ,   0sin yyLk , and   0sin zzLk for the x, y, and z directions. The allowed wavevectors satisfy: 
 

x x xk L n , y y yk L n , z z zk L n , for zyx nnn ,,  integers  (2) 

 
 

K Space 
 

The allowed states can be plotted as a grid of points in k space, a 3-D visualization of the 
directions of electron wavevectors.  Allowed states are separated by , ,/ x y zL in the 3 

directions in k space. 
 
The k space volume taken up by each allowed state is 3 / x y zL L L .  The reciprocal is the 

state density in k space (# of states per volume in k space), 3/V   where V is the volume 
of the semiconductor (in real space).  
 
The number of states available for a given magnitude of wavevector |k| is found by 
constructing a spherical shell of radius |k| and thickness dk.  The volume of this spherical 
shell in k space is dkk24 . 



 
Allowed wavevector states in k space form a lattice. 

A spherical shell gives the number of allowed states at a specific radius |k|. 
 
The number of k states within the spherical shell, g(k)dk, is (approximately) the k space 
volume times the k space state density: 

2
3

( ) 4
V

g k dk k dk 
          (3) 

Each k state can hold 2 electrons (of opposite spins), so the number of electron states is: 

2
3

( ) 8
V

g k dk k dk 
          (4a) 

Finally, there is a relatively subtle issue. Wavefunctions that differ only in sign are 
indistinguishable. Hence we should count only the positive nx, ny, nz states to avoid 
multiply counting the same quantum state. Thus, we divide (4a) by 1/8 to get the result: 

2
2

3 2
( )

V Vk
g k dk k dk dk  

              (4b) 

 
This is an expression for the number of unique electron states available at a given |k| over 
a range dk.  We need an expression in terms of energy rather than wavevector k.  We 
proceed from the relationships between wavevector, momentum p, and energy E: 

kp  , *2 2/ mpE   *

22

2m

k
E
     (5) 

with *m  as the effective mass.  Rewriting, and noting that the energy of carriers in the 
conduction band is given with respect to the conduction band edge energy Ec:   *

2
2

2cE E m
k

       (6) 

Differentiating: 
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Combining (6) and (7a): 
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Plugging (6) and (7) into (4b): 
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    (8) 

 
Dividing through by V, the number of electron states in the conduction band per unit 
volume over an energy range dE is: 

  1/2* *

2 3

2
( )

cm m E E
g E dE dE

       (9) 

This is equivalent to the density of the states given without derivation in the textbook. 
 

 
3-D density of states, which are filled in order of increasing energy. 

 
Dimensionality 
 
The derivation above is for a 3 dimensional semiconductor volume.  What happens if the 
semiconductor region is very thin and effectively 2 dimensional?   
 
Confining the electron in the x-y plane, the wavevector z component kz =0.  The allowed 
states in k space becomes a 2 dimensional lattice of kx and ky values, spaced ,/ x yL apart.  

The 2-D k space area taken up by each state is 2 / x yL L .  The number of states per area 

in k space is 2/A  with A as the real-space area of the thin semiconductor. 



 
The number of states available at a given |k| is found using an annular region of radius |k| 
and thickness dk rather than the spherical shell from the 3-D case. There is a factor of ¼ 
due to the equivalent nature of the +/- states (just as there was 1/8 in the 3D case).  The 
area is kdk .  The number of k space states is: 
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A
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     2 spin states 4  equivalent states= 
A

k dk
      (10) 

Converting to energy using (7b): 
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  (11) 

Cleaning up and dividing through by area, the density of states per area at an energy E 
over a range dE is: 

2

*

)(

dEm

dEEg        (12) 

Unlike the 3-D case, this expression is independent of energy E! 
 
In a real structure (which is not perfectly 2-D), there are finite energy ranges over which 
the energy independence holds (the derivation holds for each single, well separated 
possible value of kz).  The resulting density of states for a quantum well is a staircase, as 
below in red. 
 
Further restriction of the semiconductor dimensionality to 1-D (quantum wire) and 0-D 
(quantum dot) results in more and more confined density of states functions. 
 

 
Density of states for 0-D through 3-D regions. 

 
Low dimensional and confining nanostructures have lots of applications controlling 
carriers in semiconductor devices. 



  
 

Sommerfeld-Drude model 

Recap of Drude model:  

1. Treated electrons as free particles moving in a constant potential background.  

2. Treated electrons as identical and distinguishable. 

3. Applied classical (Maxwell-Boltzmann) statistics on them. 

 

Drawbacks of this approach: 

1. electrons cannot be treated classically – they are Fermions  

2. They are identical and indistinguishable. 

3. They obey Pauli exclusion principle 

 

These observations imply that electrons obey Fermi-Dirac (FD) statistics. 

 

Sommerfeld Drude model: - Retains almost all aspects of Drude model with the following 

modifications: 

1. Treats electrons using FD statistics. 

2. Recognizes that their energies are discrete – treats them like a particle in a box of 

constant energy. 

3. Uses Pauli principle to distribute them in the available energy states. 

 

Ground state of ideal electron gas  
 

Electron confined in a cube of sides L at T=0, potential inside the cube is constant (take it to 

be zero) – potential at boundaries  . Assume non-interacting electrons i.e. 

                                   
 Hamiltonian is: 

 

   

  
       

Using the periodic boundary condition                     and so on, 

 

     
 

  
      

with the energy eigenvalues      
    

  
 - this is the dispersion relation for free electrons. 

 

 

Figure 1: Dispersion relation for free electrons 
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k is a position independent wave vector, each value of k label a distinct state.  

       
 

implying that k plays the role of wave-vector for the free electrons 

 

Allowed values of k are given by the quantization condition                     to be  

 

   
  

 
   where nx is an integer 

 

Now we have levels – put electrons in them following Pauli exclusion principle (Pauli 

exclusion principle is a manifestation of e-e interaction although we did not put it in 

explicitly in the Hamiltonian) – can do this as electrons are treated to be independent -  each 

level denoted by a particular value of k can accommodate two electrons (for two values of the 

spin projection).  

 

For large N the filled states form a sphere in k-space (remember        ) – its radius is kF 

(this is called the Fermi wave-vector)  and volume 
 

 
   

 
. This is the Fermi sphere.  kF is 

given by: 

 

  
 

 
   

  
 

 
  
  

    

 

          
 

 --- (1) 

 

Figure 2: Fermi sphere at T=0 

The highest occupied energy level in the ground state is called the Fermi energy. This 

separates the completely filled states from the completely empty ones in the ground state. For 

free electrons     
    

 

  
 . For metallic systems Fermi energy        and Fermi velocity 

   
   

 
          .  

 

Total ground state energy is 

    
    

  
    

 

 

For large N; the values of k are arbitrarily close to each other – can treat as continuum: 

 

 

 

 
 

   
    



  
 

thus the total energy of the electronic system is  

   
 

   
 

    

  
     

 

   
 

    

  
       

 

  

  

   
  

 
 

Average energy per particle is 

 

 
 

 
 

 

 

 

 
    

 

  

  

   
  

     
       

 

 
   

 

 
      

 

In contrast to a classical gas, the degenerate quantum mechanical electron gas has appreciable 

ground-state energy. The Fermi temperature TF ~ 10
5
K; hence compared to classical gas at 

room temperature the average energy of electrons is about 100 times more.  

 

Ideal electron gas at finite temperatures 
 

Probability that a state with energy is occupied at temperature T is  

     
 

            
 

where  is the chemical potential and equals    at T=0. Nominally it is the value of energy at 

which the probability of occupation is ½.  

 

 

Figure 3: Fermi function at zero temperature and at a finite temperature 

 

The total energy of the electron gas at a finite temperature is: 

 

   
 

   
            

Or the energy density u=E/V is 

  
 

   
            

Similarly number density n is:   

  
 

   
        

Change the integral form from over k to over energy: 

 

  

   
 

 

   
       

 

  
     

 

  

   

  
 

 

   

  

  
 

or 

  
 

   
                   

 

 

 

where 



  
 

     
 

   
 
  

  
 
   

   
 

 

 

  
   

 

  
 

is the density of states, g()d= # states per unit volume in the energy interval and d.  

 

Similarly,  

              
 

 

 

 

This is a general form independent of any approximations regarding the interaction of the 

electrons (which enters only through the specific form of g() used).  

 

The number density in Sommerfeld model is given by: 

 

             
 

 

 
 

   
 
  

  
 

 
 
         

 

 

 

or, 

    
    

    
 
   

     
 

   
  

 

where         
 

  
 

    

        
  

 

 
 is Fermi integral of order ½ - can be solved exactly only 

in two extreme limits. 

 

1. 
 

   
   (valid for low-density systems like semiconductors):  

 

    
    

    
 
   

 
 

    

 

2. 
 

   
   (valid for high-density systems like metals): 

  
 

    
 

   
        

  

 

 

  
    

 

  
 

    
   

   
   

   
  

 
 
   

 
 
 

   ---(2) 

 

 

Also, from equation (1) we have 

  
 

     
  

 

    
    

   
   

----(3) 

 

Combining eqns. 2 and 3 we get,  

       
  

 
 
   

 
 
 

   

 
  

 

 

This gives the expression for   in terms of    (in the limit  
   

 
  ): 



  
 

       
  

  
 
   

  
 
 

    

 

Even near the melting point of metals,          , hence for metals at all temperatures 

       .  
 

The energy density in Sommerfeld mode can be similarly calculated: 

  

 

              
 

 
    

  

 
            

 

 

The specific heat then becomes: 

   
  

  
 

  

 
  

        
  

 

   

  
     

Compared to classical value ~     the Sommerfeld electronic contribution is  
   

  
 ~100 

times smaller.  

 

Physically      easy to understand – at any finite temperature the Fermi distribution 

changes appreciably from its zero temperature value only in a narrow region of width few kBT 

around . The Fermi edge is smeared out over this narrow energy range by the thermally 

created electron–hole pairs. The states are neither fully occupied nor completely empty here. 

At energies that are farther than a few times kBT from the chemical potential , states within 

the Fermi sphere continue to be completely filled, as if they were frozen in, while states 

outside the Fermi sphere remain empty. Thus, the majority of the electrons are frozen in 

states well below the Fermi energy: only electrons in a region of a few times kBT in width 

around    – i.e., about a fraction        of all electrons – can be excited thermally, giving 

finite contributions to the specific heat. 

 

Figure 4: Derivative of Fermi function at a finite temperature 

Number of electrons excited at any temperature T is            . Each of them gains 

energy    . Total energy gain             . So   

 

   
  

  
   

        

 

     is not seen at room temperature, rather the specific heat over any extended 

temperature range goes as          .   

 



  
 

The values of  measured for Alkali metals match quite well with the experimental values. 

The difference in the calculated and experimental values can be attributed to an apparent 

change in the mass of the electrons in response to the periodic potential due to the ions in the 

crystal. For certain compounds (called Heavy Fermions) like CeAl3 and CeCu6 ex can be 

hundres of times larger than th – to account for these we need striong e-e interactions.  

 

Other properties of electron gas from Sommerfeld model:   does not depend on the 

distribution function – only properties that explicitly depend on v or l will change from the 

Drude value.   

a. Thermal conductivity   
 

 
     remains unchanged. 

b. Thermo power    
 

   
    

  

 
 
  

 
  

   

  
    

   

  
         - 100 times 

smaller than Drude value, closer to measured values of Q. 

c. Electrical properties remain unchanged. 

d. Wiedemann-Franz law still remains theoretically valid (experimentally valid only at 

very low T and at high T). 

 

How can we use quantum statistics in a classical dynamical theory? – Why does 

Sommerfeld model work? 
 

We can use classical description if uncertainty principle is not violated. For typical electron 

       so maximum        ; implying the uncertainty in its position is     
 

  
 

 

  
 which 

is of the order of the lattice spacing. If we do not want to probe electron dynamics in the scale 

of lattice spacings classical description is OK. Conduction electrons are delocalized – need 

not probe them on atomic scale – mean free path ~ 100 Angstroms. Probing with visible light 

(wavelength ~1000 Angstroms) also poses no problems. Cannot study electron dynamics 

under X-ray excitation ( ~ 1 Angstrom) by using this model. 

    



   
 
 

     
 

 
 
 
 
 
 
 
 
 
 
 

Kronig–Penney Model - Free-Electron / 
Quasifree-Electron Approximation: Density of 

States Function 
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1 Free electron and nearly free electron model & 
concepts leading to Kronig – Penney model 
 
 
1.1 Free Electron Theory 
 

In 1900, Drude first proposed that the large electrical and thermal conductivity of 
metals and semiconductors is due to the presence of free electrons.  Also Drude and 
Lorentz jointly explained these properties based on the following assumptions, 
 

1. Free electrons that move through the specimen suffer collisions with the atoms 

2. These free electrons are treated as free particles in ideal gas 

3. Hence these particles obey Maxwell-Boltzmann statistics 

 
One of the supporting points for the acceptance of this classical free electron 

theory was that it is in agreement with the Wiedmann-Frantz law, which relates electrical 
and thermal conductivity. 
 
1.2 Free Electron Model 
 

In this model, a bulk specimen is assumed to be consisting of two parts: one is the 
fixed positive charges and the other is free electrons which are nothing but the valance 
electrons.  And theses electrons are assumed to be free except at the specimen’s surface 
and have the effect of confining them to the interior.  Thus, according to this model, the 
conduction electrons are free to move anywhere in the sample (totally free) except for 
rare reflection from the surface and resembles much like molecules in ideal gas.  
 

The free electron approximation, which allows the conduction electrons to move 
freely within the solid material boundary implies that the total energy depends mainly on 
kinetic energy and not potential energy.  This model which is mainly applied for metals 
considers the specimen to be a box filled with electrons.  These electrons are free and the 
only constraint they experience is that they are in a box. 
 
1.3 Electron gas in one dimensional box 
 

Let the length of the box be L with infinite potential barrier at the distance x=0 
and x=L and let an electron of mass m be represented by the wave function ψ(x) can be 
equated as, 
 
   Hψ=Eψ   (1) 
 
where H is Hamiltonian and E is total energy (sum of potential and kinetic energy) also it 
is allowed eigen values (energies) of the electron in the orbital (i.e., here the study is for a 



   
 
 

     
 

system of single electron and the orbital model is valid only if when there is no 
interactions between electrons) 
 
As the total energy considered is mainly kinetic equation (1) takes the form 
 

   
m

PH
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2

=    (2) 

 

where P is the momentum and 
dx
diP −=  in quantum mechanics, hence, 
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The expected boundary conditions are ψn(0)=ψn
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n Em

dx
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

−=

(L)=0, i.e., the electron present 
inside the box of dimension L.  Rewriting Eqn. 3,  
 

     (4) 

 
The general solution of Eqn.4is, 
 
  ikxikx

n BeAex −+=)(ψ    (5) 
 

where             k2
nEm

2

2
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 =      (6) 

 
We get A=-B by substituting the first boundary condition ψn

we get, SinkL=0 k=nπ/L   ; with n=1,2,3,… 
 

On substituting in Eqn. 6, 

(0)=0 and this shows that the 
wave function takes the sine like shape. 
Applying the second boundary condition ψ(L)=0,  
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And their wave function representation is, 
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1.4 Inferences 
 
 

1. Hence the wave function exists only for integral values of n, ultimately n is the quantum 
number. 

2. From Eqn.7 the energy consists of discrete value with their spacing depends on the terms 









2

2

L
n , the energy levels are closer when L is large.   

3. The value of the constant A in Eqn.8 is determined by considering the normalization 
condition (i.e. the electron exists somewhere within the box) and their probability is 

maximum, 1.  Hence, ∫ =
L
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So the existing wave function is 





=

L
xnSin

L
x πψ 2)(n  

4. Suppose if the box has to accommodate N number of electrons, the placing of electrons in 
the allowed energy levels is done by following Pauli’s exclusion principle.  Hence each 
quantum level with quantum number n obeying Pauli’s principle can accommodate two 
electrons; one with spin up and another with spin down. 
 
Consideringeven number of electrons N, these electrons are filled sequentially from the 
bottom most level(n=1) to the top most energy level (nf), with            
 
 2nf=N 
 
The upper most energy is nothing but the Fermi energy at 0K, which can be obtained 
from Eqn. 7 with n=nf
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            Now the total energy Eo is obtained by individually summing the energies En 
between n=1 and nf
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 =N/2. (Where 2 is introduced due to spin degeneracy) 
 

Therefore,  

 
On simplification, we get, 
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1.5 Conclusion 
 
Free electron model helps in better understanding of several key parameters of metals 
like heat capacity, thermal conductivity, electrical conductivity, magnetic susceptibility 
and electrodynamics. 
 
           However, it fails to explain the positive values of Hall co-efficient observed,  fails 
to differentiate insulator, semiconductor and conductor materials. It also fails to relate 
conduction electron in metals to the valence electron of free atoms and cannot explain 
transport properties like magneto transport. 
 
 
1.6 Nearly Free Electron Model 
 
             The concept of energy bands was introduced to have a better understanding of 
metals and crystals. Every solid has electrons. However, to understand the difference in 
the behavior of these electrons in insulators and conductors, we have to take into account, 
the presence of lattice in the specimen.  Hence the electrons from now are not totally free 
instead they are nearly free since the presence of lattice (ions) has its own influence 
(though weak). 
 
Following the free electron model, the allowed energy values when the form extends in 3 
dimension takes, 

 ( )222
2

2 zyxk KKK
m

E ++=
  

 
Over a cube of side L, where Kx, Ky, Kz =±nπ/L;  n=0,2,4,… 
 
According to nearly free electron model, electrons present in a specimen are slightly 
perturbed by the weak periodic potential produced by the lattice. Qualitative analysis 
about the metals and crystals can be done by studying their band structures. 
 
           Energy gaps are caused when electrons’ undergo Bragg’s reflection.  In these gaps 
Schrodinger equation which depicts the wave like nature of electron does not exist.  
These energy gaps detected plays a vital role in discriminating / identifying a solid as an 
insulator or a conductor.  The energy of the electron based on free electron and nearly 
free electron model are shown in Fig. 1a. and Fig. 1b respectively. 
 
 
 



   
 
 

     
 

 
   
 
Fig. 1a.Energy curve of a free electron. 
 
 

 
 
Fig. 1b.Energy curve of an electron in a monoatomic linear lattice; a – lattice constant. i.e., I reflection at ± π/a 
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The Fig. 1b shows an energy gap at k=±π/a, where Bragg’s first reflection is observed.  
As per Bragg’s concept other gaps occur for integer values of n.  The reason for the 
occurrence of reflection at k==±π/a is because the reflected wave from one atom in the 
linear lattice interferes constructively with a phase difference of 2π. 
 
 
1.7 Reason for energy gap formation 
 
           The wave function at the point k=±π/a do not have traveling waves instead 
standing waves.  The standing waves are formed when wave is Bragg reflected; its 
direction of travel is opposite to its incident direction and subsequent reflection reverses 
the direction again there by producing standing waves since the wave by itself should be 
time independent.  The two different forms of standing waves in terms of traveling waves 

axiaxi andee // ππ −  are, 
 






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=+=+ −

a
xCosee axiaxi πψ ππ 2)( //           (real part) 

 


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



=−=− −

a
xiSinee axiaxi πψ ππ 2)( //           (imaginary part) 

 
These two different standing waves ψ(+) and ψ(-) group electron at different 

region with different potential energy.  This gives raise to the formation of forbidden 
energy gap. 
 
 
1.8 Concepts leading to Kronig–Penney Model  
 

The fundamental nature of insulators, conductors and semiconductors can be 
functionally explained based on band theory.  The recent development in semiconductor 
physics, the semiconductor hetero-structures are also analyzed using the concept of band 
theory. 
 

Another notable theory, the free-electron theory, can help in understanding the 
electron movement in metals.  It assumes that, the valence electron in a metal absorbs 
thermal energy which ultimately is converted into kinetic energy with an average of 
(3/2)KBT based on law of equipartition of energy.  But the calculated molar electronic 
specific heat does not match with the experimental value.   
 

Hence it can be concluded that the equipartition law and the classical Maxwell-
Boltzmann statistics are not adequate for evaluating electronic specific heat in metals.  
Another failure of classical free electron theory is that, it does not account for the 
magnetic moment of electron due to its spin.  
 



   
 
 

     
 

The free-electron theory, which neglects the magnetic moment of electrons 
arising from their spin predicts that, paramagnetic susceptibility is proportional to the 
temperature for each electron.  On the contrary, the experimental results show that the 
susceptibility is almost independent (constant) of temperature.   
 

The reason is, the classical theory allows all the free electrons to gain energy 
which does not actually happen in reality, which leads to drastic difference between the 
calculated and the observe values. 
 

At this juncture, the quantum free-electron theory steps in, assumes that an 
electron in a metal experiences a constant or zero potential and hence is free to move 
within the lattice.   
 

The quantum free-electron theory thus successfully explains the specific heat, 
electrical conductivity, thermionic emission, thermal conductivity and para magnetism of 
materials. However, the concept fails to differentiate the conductivities in conductors, 
semiconductors and insulators. 
 

In a real crystal, electrons move in a regularly arranged lattice of positive ions.  
The electrons have the zero potential at the positive ion site and possess maximum value 
at the intermediate lattice points.   
 

This could be schematically represented as shown in Fig. 2(sine wave notation).  
The observed potential is periodical as the lattice planes.  Bloch has the solution as 

ikx
k exUx )()( =ψ  for the Schrödinger equation, which describes the electron motion: 

   

  0)]([2
22
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=−+ ψψ xVEm
dx
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
      (9)  

  
where, ψ is the wave function and Uk(x) in the Bloch’s solution, which has the 

periodicity of the lattice.   
 

Hence, the wave function includes both a plane wave eikx which is modulated by 
the periodic function Uk(x) and the state of motion of electron, which is represented by 
the wave vector k. However, it is difficult (not tractable) to solve the Schrödinger’s 
equation with the sinusoidal periodicity. Therefore, Kronig and Penney suggested a 
simpler model, where the inner potential of the crystal system has the rectangular shaped 
potential.  
 

Thus, in the Kronig Penney model, instead of experiencing a gradual variation in 
the strength of the potential electrons experience a maximum potential (potential well) 
and minimum value (potential barrier) in the presence of the lattice planes. 

 
 
 



   
 
 

     
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. One dimensional periodic potential distribution for a crystal 
 
 

2 ELECTRON IN A PERIODIC FIELD OF A CRYSTAL (THE 
KRONIG - PENNEY MODEL) 
 

For the treatment of our problem, a periodic repetition of the potential well of Fig.3, i.e., 
a periodic arrangement of potential wells and potential barriers, is most probably very close to 
reality and is also best suited for the calculation. Such a periodic potential is shown in Fig. 3 for 
the one-dimensional case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Ideal periodic square well potential used by Kronig and Penney. 
 

Although this model is highly artificial, yet it illustrates many of the characteristic features of the 
behaviour of electrons in a periodic lattice.  The wave functions associated with this model can 



   
 
 

     
 

be calculated by solving Schrodinger equations for the two regions I and II. The time-
independent Schrodinger equation takes the following forms for the two regions 
 

 + E  = 0;   for 0 < x < a               (10) 
And  
 
 

 + (E- ) = 0;     for –b < x < 0            (11) 
 
 
Making use of Bloch’s theorem, the solution can be written in the form 

 
 

(x) = (x)         (12) 
 
 
Assuming that the total energy E of the electron is less than the potential energy , we define 
two real quantities α and β such that 
 

 =   (13) 
 
and  = -E)     (14) 
 
 
Thus                     
 
 

 = 0;    for 0 < x < a                    (15) 
 

 

 = 0;    for –b < x < 0    (16) 
 

 
 
The solution that will be appropriate for both the regions suggested by Bloch is of the form 
 

(x) = (x)             (17) 
 
On differentiating this equation, one gets 
 



   
 
 

     
 

 =  +  
 
 

and = + –  
 

   i.e.,  -  
 
 
Substituting these values, we get 
 
 

+2iK +( =0;    for    0<x<         (18) 
 
 

and +2iK -(  = 0;    for   -b<x<0                                        (19) 
 
 
where  represents the value of (x) in the interval 0<x<a and  the value of (x) in the 
interval -b<x<0. 
 
 
The solution of the differential Eqn. (18) is of the form 
 

=  
 

 = m    and    =  
 
Substituting these values in Eqn. (18), we get 
 

 = 0 
 

 
 
 
                                          m =  
                                          m = -iK ± iα 
 
 
i.e.,                                     = -iK + iα = i(α - K) 



   
 
 

     
 

and  = -iK - iα = -i(α + K) 
 
 
Thus the general solution is 
 

 = A  + B  
 = A  + B  (20) 

 
 
Where A and B are constants. 
Similarly Eqn. (19) can be written as 
 

 + 2iKm – (  + ) = 0 
 

                                   m =  
 
 
                                   m = -iK ± iβ         
 
i.e.,                             = -iK + β = (β - iK) 
 
and  = -iK - β = - (β + iK) 
 
 
Thus                                 = C  + D  
 

 = C  + D  (21) 
 
 
Where C and D are constants. The values of the constants A, B, C and D can be obtained by 
applying the boundary conditions. 
 

 =  ;           =  
 

and  =  ;           =  
 
 
Applying these conditions, we get 
 
(i)                          (A + B) = (C + D)                           (22) 
 
(ii)                     



   
 
 

     
 

 

           =              

 
i.e.,                           i(α – K)A – i(α+K)B = (β – iK)C – (β +iK)D                                   (23) 
 
(iii)                   A  + B =  C  + D (24) 
 
(iv)  
 

           =  

i.e.,  
 
                       = (25) 
 
 
Eqn. 22,23,24 and 25 will have non- vanishing solutions if and only if the determinant of the 
coefficients A, B,C and D vanishes. This requires that 
 
 
 

1 1 1 1  
i(α-K) -i(α-K) (β-iK) -(β-iK) = 0 
e ei(α-k)a e-i(α+k)a e-(β-iK)b  (β+iK)b 
i(α-K) e -i(α-K) ei(α-k)a (β-iK) e-i(α+k)a -(β-iK) e-b(β-iK)b  (β+iK)b 

 
 
Thus the solution of the determinant (Eqn. 25) is 
 

 (26) 
 
 
Eqn. (26) is complicated but a simplification is possible. Kronig and Penney considered the 
possibility that   remains finite. Such a function is called delta function. Under these 
circumstances,  and as .  
 
Hence Eqn. (26) becomes 
 



   
 
 

     
 

 
 

 
 
 
Since  

 
 
Substituting this in the above equation, we get 
 

 

Where                          
 

 
 

 

ie.,     (27) 
 
 
 

The term   is called the barrier strength. The term   in Eqn. (27) is sometimes 
referred as the scattering power of the potential barrier. It is a measure of the strength with which 
electrons in a crystal are attracted to the ions on the crystal lattice sites. Also  

or  
 

and (28) 
 
Eqn. (27) is a condition of the existence of a solution for the electron wave function. 
 
 
 There are only two variables in Eqn. (27), namely  and K. The right hand side of Eqn. 
(27) is bounded since it can only assume values between +1 and -1. If we plot the left-hand side 
of this equation against , it will be possible to determine those value of  (and hence 



   
 
 

     
 

energy) which are permissible; that is, permit  to take values between +1 and -
1. This has been plotted in Fig.4. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Plot of  =cosKa with P =3π/2. 
 
 
3. Quasifree-Electron Approximation: Density of States 
Function 

 
3.1 Inferences 

1. The permissible limit of the term  lies between +1 to -1. By varying αa, 
a wave mechanical nature could be plotted as shown in Fig. 5, the shaded portion of the 
wave shows the bands of allowed energy with the forbidden region as unshaded portion. 
 
 
 
 
 

 
 
 
 
 
 
 

 
 



   
 
 

     
 

Fig. 5. Left hand side of Eqn. 28 
 
2. With increase of αa, the allowed energy states for a electron increases there by 
increasing the band width of the bands, i.e., the strength of the potential barrier 
diminishes. This also leads to increase of the distance between electrons and the total 
energy possessed by the individual electron. 
3.Conversly if suppose the effect of potential barrier dominate i.e., if P is large, the 

resultant wave obtained in terms of  shows a stepper variation in the 
region lies between  +1 to -1. This results in the decrease of allowed energy and increase 
of forbidden energy gap. Thus at extremities,  
 
 
Case (i) when P∞, the allowed energy states are compressed to a line spectrum. 
(Fig. 6b)  
 
Case (ii) when P0 the energy band is 
broadened and it is quasi continuous. 
(Fig. 6c) 
 
 
3.2 Energy Spectrum 

  
 
 
 
 
 

 
 

 
 
 
 
 

 
Fig. 6b. Line spectrum of energy bands          6c. Quasi state spectrum 

 

Case (i):

sinαa =0; or αa = ± n  =>  
 

on rearranging,  

At one of the extremities, p ∞ 



   
 
 

     
 

     
            (29) 

 

Here the energy depends on the width of the potential rather than any other parameter. 
The energy level of electron in the crystal lattice is discrete and is similar to the particle 
in a potential box with an atomic dimensions. This is because with a large value of 
potential strength barrier the tunneling effect is explicitly improbable. 
 
 
Case (ii):

Substituting the values =  on rearranging, 
 

When p0, with the same equation cosαa=coska => α= k 

                                              E=                     (30) 
 

=  
 
λ here refers to the wave nature of the electron and is equated as de Broglie’s wavelength 

 E=   (31) 
 

 
 
The energy obtained above corresponds to the energy of the completely free particles and 
is depicted is Fig. 7. 
 
 
 E   
  
 
 
 
 
 
 
 
 
 
 
 

Free              Intermediate      Tight 
Electron        case                     binding 



   
 
 

     
 

Fig. 7.Energy level structure for differentiating degrees of binding. 
 
Thus using this model a system can beanalyzed from the free state condition to the 
extremely bounded condition. 
 
 
3.3 Number of Possible Wave Functions in a Band 
 
 

Let us consider a one-dimensional crystal of N lattices. The length L of the lattice 
is N(a+b). Imposing the periodic boundary conditions for obtaining the running wave 
picture of the de Broglie wave, we find that the wave function must be periodic in ‘L”. 
That is  

 
 
The wave function in one dimensional periodic potential lattice is given by 
 

and 
 

 
 
Imposing the periodic boundary conditions, we get 
 

                              (32) 
 
We have already seen that the modulating function   has the periodicity of the 
lattice. 
 
   i.e.,    
 
 
Where Na is the length ’L’ of the crystal.Substituting this in Eqn. (32), we get 
 

 
 
    
 

or                                          K =             (33) 
 
 
with                                     n = ±1, ±2, ±3….. 
 

 Now                                    n =  
 



   
 
 

     
 

Thus the number of possible wave functions in the interval dK is 

dn =   
 
Hence total number of possible states in a band is  
 

                                            n =   =  

                                           n =  ,           
 
i.e.,        na = L                (34) 
 
with b 0, a+b Also length of the crystal L = N(a+b) = Na. Comparing this with 
Eqn.6, we get n = N, where N is the number of unit cells. Thus the total number of 
possible states in a band is the number of unit cells. Taking into account the spin of the 
electron and Pauli’s exclusion principle, each state can be occupied at most by two 
electrons, and hence the total number of electrons in a band is 2N.       
 
3.4 Density of states 
 

Density of states for electron is nothing but the number of available energy states 
for the electron to occupy.  Knowledge about this helps us to understand the electronic 
transport phenomena.  Let it be denoted as D(E) and this is dealt with in the energy range 
of E and E+dE with the representation as D(E)dE.   
 

The expression for density states of free electrons for in metals and in crystals are 
the same except the considered mass in metals has been replaced by effective mass in 
crystals. 
 
The density of states in one dimension is given by the equation  
 

dE
dkEn

π
2)( =           (35) 

 
But the dispersion relation given by Kronig Penny is, 
 

  CoskLLCos
L

LPSin
=+ α

α
α    (36) 

 
With the aid of this equation, the density of state equation becomes,  
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The effective masses me 
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of electron in the range k=nπ/L are defined as, 

  ;   n=0,1,2…  (38) 

 
then with the dispersion equation the effective mass could be rewritten as  
 
  oe mm β=  
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where, k= nπ/L and E is the energy at the lower edge of the upper band at k= nπ/L. 
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Part III 

Concept of Brillouin zones 

The electron moving in a periodic potential lattice can have energy values only between allowed 

regions or zones. From Kronig-Penney model, we arrive at the solution of the electron wave 

function as  

(
𝑚𝑉0𝑎𝑏

ђ2
)

sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝐾𝑎 

𝑃
sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝐾𝑎……. (1) 

Where 𝑃 =
𝑚𝑉0𝑎𝑏

ђ2  is called as the scattering power of the potential barrier. It is a measure of the 

strength with which electrons in a crystal are attracted to the ions on the crystal lattice sites. 

Also 

𝛼2 =
8𝜋2𝑚𝐸

ℎ2
 𝑜𝑟 𝐸 =

𝛼2ℎ2

8𝜋2𝑚
 

And             𝐾 =
2𝜋

    𝜆    
 

We can plot the total energy E of the electron versus the wave number or the propagation vector 

K as shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

The RHS of equation (1) becomes ±1 for values of 𝐾 =
𝑛𝜋

𝑎
 and hence the discontinuities in the E 

versus K graph occur at 𝐾 =
𝑛𝜋

𝑎
, where n takes the values of ±1, ±2, ±3, … etc. the dotted curve 

shows the free electron parabola. From the graph we see that the electron has allowed energy 

Figure 1. The relation between energy and wave number of a one dimensional lattice 



values in the region extending from 𝐾 = −
𝜋

𝑎
 to 𝐾 = +

𝜋

𝑎
. The zone is called the first Brillouin 

zone. After a break in the energy values called the forbidden region or band or zone, we get 

another allowed zone of energy values in the region extending from 𝐾 = −
𝜋

𝑎
 to −

2𝜋

𝑎
 and 𝐾 =

+
𝜋

𝑎
 to+

2𝜋

𝑎
. This zone is called the second Brillouin zone. Similarly the other higher order 

Brillouin zones can be defined. 

 

 

 

 

 

Brillouin zones in two Dimensions 

The motion of the electron in two dimensions can be discussed using a wave number K, which is 

measured in the direction of propagation of the wave. The wave number K can be analyzed into 

components along the x and y axes, which are respectively, Kx and Ky  

The first Brillouin zone is sketched in fig (3), the value of ± 
𝜋

𝑎
 represent the limits of the zone 

along Kx. Similarly along the Ky axis the value of ± 
𝜋

𝑎
 also represent the limits of the zone. In 

general, the condition for any energy discontinuity is  

𝐾 = ±
𝑛𝜋

𝑎
 

So in two dimensions the condition reads 

𝐾𝑥𝑛1 + 𝐾𝑦𝑛2 =
𝜋

𝑎
(𝑛1

2 + 𝑛2
2)  

Where, 𝑛1 and 𝑛2 are integers corresponding to the single integer n and referring to each of the 

axes. To sketch the first zone 𝑛1 and 𝑛2 are made equal to ±1, or 0. The equations of the lines 

bordering the first zone are therefore 

𝑛1 = ±1, 𝑛2 = 0, 𝑔𝑖𝑣𝑖𝑛𝑔 𝐾𝑥 =  ±
𝜋

𝑎
 

𝑛1 = 0, 𝑛2 = ±1, 𝑔𝑖𝑣𝑖𝑛𝑔 𝐾𝑦 =  ±
𝜋

𝑎
 

Thus a square passing through the points A, B, C and D gives the first Brillouin zone. 

The second Brillouin zone should obviously pass through the points E, F, G and H. The 

complete picture of the second zone is obtained by taking 𝑛1 and 𝑛2 as the next integers in the 

series above those used for the first zone. These are 𝑛1 ± 1 and 𝑛2 ± 1. The equations giving the 

boundaries of the second zone are  

Figure 2. The first two Brillouin zones for one-dimensional case. 



𝑛1 = +1, 𝑛2 = +1, 𝑔𝑖𝑣𝑖𝑛𝑔 𝐾𝑥 + 𝐾𝑦 =  
2𝜋

𝑎
 

𝑛1 = −1, 𝑛2 = +1, 𝑔𝑖𝑣𝑖𝑛𝑔 − 𝐾𝑥 + 𝐾𝑦 =  
2𝜋

𝑎
 

𝑛1 = +1, 𝑛2 = −1, 𝑔𝑖𝑣𝑖𝑛𝑔 𝐾𝑥 − 𝐾𝑦 =  
2𝜋

𝑎
 

𝑛1 = −1, 𝑛2 = −1, 𝑔𝑖𝑣𝑖𝑛𝑔 − 𝐾𝑥 − 𝐾𝑦 =  
2𝜋

𝑎
 

The above four equations describe a set of lines at 450 to the 𝐾𝑥 𝑎𝑛𝑑 𝐾𝑦 axes passing through E, 

F, G and H. the second Brillouin zone is thus the region between the squares ABCD and EFGH. 

The third Brillouin zone is obtained giving 𝑛1 and 𝑛2 values of 0, ±1 and ±2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The first three Brillouin zones for a two –dimensional square lattice. 



Brillouin zones in three dimensions 

The equation used to describe the zones in three dimensions is given by 

𝐾𝑥𝑛1 + 𝐾𝑦𝑛2 + 𝐾𝑧𝑛3 =
𝜋

𝑎
(𝑛1

2 + 𝑛2
2 + 𝑛3

2)  

The first zone for a simple cubic lattice is clearly a cube intersecting the 𝐾𝑥, 𝐾𝑦𝑎𝑛𝑑 𝐾𝑧 axes at 

the points 
𝜋

𝑎
. Just as in the triangular form of the second zone in two dimensions, the second zone 

in three dimensions is obtained by adding a pyramid to each face to the first zone cube. 

 

 

 

 

 

 

 

 

 

 

 

 

       



Class 32: E Vs k, Brillouin Zones and the Origin of Bands 
 

In this class we will plot the reciprocal lattice information as well as the wave vector information 

on the same plot and examine the interaction between them in a pictorial manner.  

 

We have noted that while the        relationship is the same for free electrons, nearly free 

electrons, as well as the bound electrons, it is a continuous curve only for free electrons. For 

nearly free electrons as well as bound electrons, confinement of the electron results in only 

specific values of   to be permitted, and therefore only the corresponding values of energy to be 

permitted. The resulting plot has discrete points that are laid out in the form of the parabola 

consistent with  

 

  
    

  
 

 

We wish to plot the periodicity of the lattice as well as the wave vectors on the same plot. The 

reciprocal space differs from   space only in the scaling factor   . Therefore reciprocal lattice 

information is multiplied by    to enable it to be plotted in   space. Therefore real lattice vector 

„ ‟ which is plotted in reciprocal space as 
 

 
, is now plotted in   space as 

  

 
. We note that  , 

which of the order of inter-atomic spacing, is of the order of 10
-10

 m, while  , the extent of 

confinement of the nearly free electrons, is of the order of meters. Therefore the reciprocal lattice 

points, plotted in   space as 
   

 
, where   is an integer, can contain 10

10
 allowed wave vectors of 

nearly free electrons which are of the form 
  

 
 between two adjacent reciprocal lattice points. 

This is the reason that allowed wave vector plots drawn on the scale of the order of  
   

 
, will 

look continuous even though they contain discrete points spaced 
 

 
 apart. 

 

We have noted that diffraction occurs when one end of a wave vector touches a Bragg plane. In 

the context of nearly free electrons, diffraction causes the        relationship to distort in the 

vicinity of the Bragg planes (or Brillouin zone boundaries). This distortion causes some of the 

energy levels to become forbidden to the nearly free electrons – which results in the presence of 

band gaps in the material. 

 

In this class we will present this interaction between wave vectors and the Brillouin zones 

pictorially and not focus on the exact values of the band gaps that result. We will look at 

examples of one dimensional, two dimensional, and three dimensional lattices and the interaction 

of wave vectors with the Brillouin zones corresponding to these lattices in   space. In the next 

class we will examine the formation of band gaps in a mathematical manner. 

 

Since a one dimensional real lattice of spacing „ ‟ is plotted in   space as 
  

 
, the Brillouin zone 

boundaries occur in intervals of 
 

 
, i.e. at 

 

 
, 
  

 
, 
  

 
 etc. The Figure 32.1 below shows the 

interaction of the        relationship of nearly free electrons with the Brillouin zone boundaries 

of a one dimensional lattice of spacing   

 

http://cbs.wondershare.com/go.php?pid=2996&m=db


 
 

Figure 32.1: Interaction of the        relationship of nearly free electrons with the Brillouin 

zone boundaries of a one dimensional lattice of spacing   

 

The distortion of the        relationship at the Brillouin zone boundaries and the resulting 

energy gaps, can be described as follows: the travelling waves of nearly free electrons undergo 

diffraction at the Brillouin boundaries and result in standing waves – as a result energy gaps 

appear. 

 

The above form of representing the interaction between the allowed energy values and the 

Brillouin zones of the material is called the „Extended zone‟ representation, since the information 

is presented spread across several lattice points, but has a single origin.  

 

Figure 1



The band gaps described here, and the remaining allowed energy levels, are in concept the same 

as the band gaps and the allowed bands, we are familiar with in the band structure of materials. 

However, in high school texts, bands of allowed energy levels are represented as boxes, 

separated by gaps which represent the band gaps, and such a diagram is called a „Flat band 

diagram‟. How does the f

 

 
 

 

The flat band diagram is sufficient to explain specific material phenomena, but is insufficient to 

explain many others. The other representations we are presenting in this class, including the 

extended zone representation and some more that will follow, are much more capable of 

explaining a variety of material phenomena when compared to the flat band diagram. 

lat  band  diagram  relate  to  Figure 1 above?  This  relationship  is 
shown in Figure 2 below.

Figure 2: Relationship between the extended zone representation and the flat band structure.



We have also noted that at 0 Kelvin the Fermi energy represents the highest occupied energy 

level in the system, and interaction of electrons with the outside world begins here. Where does 

this fit into our representations of the allowed energy levels, and how does that relate to the flat 

 

 
 

 

While the extended zone scheme plots the essential details, it is important to note that the choice 

of origin of   space is arbitrary. Due to symmetry, each lattice point is the same as every other 

lattice point. Therefore the        diagram can be repeated at each lattice point, to give a more 

complete picture of the situation in the material. This type of a diagram is called a „Repeated 

zone‟ repre

 

band diagram? Figure 3 below shows an example of this.

Figure 3: The Fermi energy in the extended zone scheme and in the flat band diagram.

sentation, and is shown in Figure 4 below.



 

 

Looking at the repeated zone representation, it can be concluded that the region in the first 

Brillouin zone, between  
 

 
 and 

 

 
, contains all of the information in a compact manner. 

Therefore it is often considered sufficient to show all of the allowed wave vectors and energy 

levels within the first Brillouin zone itself. Such a representation is referred to as the „Reduced 

zone‟ representation, 

 

Figure 4: The repeated zone representation

and is as shown in Figure 5 below.



 
 

 

In all of these diagrams, it is the location of the Fermi energy,   , which decides whether the 

material is metallic, semiconducting, or insulating. In the diagrams drawn here,    is in the 

middle of a band, therefore the material being depicted is metallic. 

 

The above diagrams were for a one dimensional lattice. Let us consider a two dimensional square 

lattice and schematically consider its interaction with the wave vectors of nearly free electrons. 

In two dimensional   space, electrons of the same energy are represented by a circle. The Fermi 

energy corresponds to the largest such circle, and we are therefore interested its interaction with 

zones of a two dimensional lattice and consider four possible values of   , resulting in four 

different values of   , and hence circles of corresponding diameters. As long as the circle is far 

Figure 5: The reduced zone representation

the two dimensional Brillouin zone boundaries. Figure 6 below shows the first two Brillouin 



from the Brillouin zone boundary, it does not interact with the boundary, and remains 

undistorted. When the circle gets close to the boundary, diffraction effects cause it to distort. 

When the circle is slightly larger than the Brilloun zone, distorted sections of the circle appear 

inside the first Brillouin zone as well as in the second Brillouin zone. 

 

 
 

zones of a two dimensional square lattice. The figures (a), (b), (c), and (d) differ in the value of 

   being depicted.    in (a) <    in (b) <    in (c) <    in (d). The allowed wave vectors are 

contained within the first Brillouin zone in figures (a), (b), and (c), In figure (d) the allowed 

wave vectors appear in the first as well as the second Brillouin zones. 

 

In two dimensions, as well as in three dimensions, it is possible to plot in the reduced zone 

representation, in just the manner it was accomplished in the one dimensional case. The figures 

get complicated but the concept is the same. By moving higher Brillouin zones by valid lattice 

vectors in   space, the information corresponding to higher Brillouin zones can be represented in 

Figure 6: Interaction  between  allowed  wave  vectors  of  nearly  free  electrons  and  Brillouin 



lattice. 

 

 
 

 

Finally, we can also look at an example of a material that has an FCC real lattice, and therefore a 

Brillouin zone that is the Wigner Seitz cell of a BCC lattice. Spheres will indicate states of the 

same energy and based on the value of   , the largest possible sphere will indicate the   , and is 

the Fermi sphere or Fermi surface. Figure 32.8 below schematically shows a case where the 

sphere corresponding to the Fermi energy just touches the Brillouin zone in specific directions. If 

   were lower, the sphere would not touch the Brillouin zone at any location, and if    were 

higher, the sphere would distort and extend into the second zone in specific directions. 

 

the  first  Brillouin  zone  itself.  Figure  7  below  shows  this  for  the  two  dimensional  square 

Figure 7: (a) Extended zone representation, (b) and (c) Reduced zone representation



 
 

 

 

 

 

 

 

  



 



 
 
  

 Objectives

 In this course you will learn the following

Difference between electrical properties of metals, semiconductor and insulators.

Band theory of metals and semiconductors.

Free electron theory of metals and concept of Fermi energy.

Calculation of density of state for free electrons.

 

Modern electronics, which has revolutionized our way of life, is based on interesting properties of a class of material
known as semiconductors. 
Semiconductors have resistivity values intermediate between those of metals and insulators. While typical metallic

resistivity is between  to  ohm-m, that of silicon, which is a representative semiconductor is 

ohm-m. Materials with resistivities higher than  ohm-m are considered to be insulators. Glass, rubber and many
plastics are typical insulators.

 

 Temperature coefficient of resistivity :

 
The resistivity of metals increase with the increase of temperature. This is because with increase in temperature, ions
in a solid vibrate more causing electrons to scatter more frequently from them. The semiconductors, on the other
hand, have a negative temperature coefficient of resistivity, i.e., their resistivity decreases with increase in
temperature.

 An empirical formula for resistivity of metal is

 PHYSICS OF SEMICONDUCTOR DEVICES

 Energy Band Diagram



 

 
where  is the resistivity at a reference temperature , ususlly taken to be 0 C or 20 C. The constant 

is known as thecoefficient of resistivity, which is a small positive number (For Cu / C.

 

 An corresponding formula for resistivity of semiconductors (or of insulators) is

 

 
where  is the resistivity at 0 C (i.e. at 273 K) and  is the absolute temperature at which the resistivity is

measured. Here  is Boltzmann constant and  is the bandgap energy, which, for semiconductors is of the
order of 1 eV and much larger for insulators.

 



 Charge carriers

 
Conductivity arises due to motion of charge carriers in a material when placed in an electric field. The primary charge
carriers in a metal are electrons. In gases and solutions, the carriers could be charged ions. The density of carriers in a

metal is very high, being of the order of  per m . 

 
Charge carriers in semiconductors are electrons and vacancies, the latter being known as holes . Typical carrier

density in a semiconductor is about  which is substantially lower than that of metals. Insulators have negligible
carrier densities

 Energy Band Diagram

 
Electrical properties of materials are best understood in terms of their electronic structure. We know that the energy
levels of isolated atoms are discrete. When atoms are brought together to form a solid, these energy levels spread out
into bands of allowed energies. The effect is qualitatively understood as follows by considering what happens when a
collection of  atoms, which are initially far apart are brought closer.

 

When the spacing  between adjacent atoms is large, each atom has sharply defined energy levels which are denoted
by  etc. As the atoms are far apart their orbitals do not overlap. In particular if each atom is in its

ground state, the electrons in each atom occupy identical quantum states. As the distance starts decreasing, the
orbitals overlap. The electrons of different atoms cannot remain in the same state because of Pauli Exclusion
Principle. Pauli principle states that a particular state can at most accommodate two electrons of opposite spins. Thus
when  atoms are brought together, the levels must split to accommodate electrons in different states. Though they
appear continuous, a band is actually a very large number of closely spaced discrete levels.

 



 See the animation

 Conductors, Insulators and Semiconductors :

 

When an electric field is applied to any substance, the electrons can absorb energy from the field and can move to
higher energy levels. However, this is possible only when empty states with higher energies exist close to the initial
states in which the electrons happen to be in. If there is a substantial energy difference between the occupied electron
state and the higher unoccupied state, the electron cannot absorb energy from the electric field and conduction cannot
take place. Thus conduction takes place only in partially occupied bands.

 
In case of a metal, the bands which arise from different atomic orbitals overlap and the electrons can absorb energy
from an electric field (or absorb thermal or light energy). The electrons in such partially filled bands are called free
electrons .

 

 

For an insulator there is a wide gap (  eV) between the lower occupied band,known as the valence band ,
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 and the higher unoccupied band, called the conduction band . No electron can exist in this forbidden gap To
promote electrons from lower levels to higher levels would require a great amount of energy. It is incorrect to say that
electrons in an insulator are not free to move around. In fact, they do. However, as there are as many electrons as
there are states, the electrons only trade places resulting in no net movement of charges.

 

 
Semiconductors, like insulator have band gaps. However, the gap between the top of the valence band and the bottom
of the conduction band is much narrower than in an insulator. For comparison, the gap in case of Silicon is 1.1 eV
while that for diamond, which is an insulator is about 6 eV.

 Quantum Mechanical Concepts

 

Formation of bands can only be understood on the basis of quantum mechanics. Earlier, we had seen that an object
behaves both as particle and as wave. According to de Broglie theory, an electron having a momentum  has an

associated wave with a wavelength . Schrödinger proposed an equation for the wave associated with a particle of

mass  having a total energy  which is moving in a potential . The Schrödinger equation, which is as
fundamental to quantum mechanics as Newton's laws are to classical mechanics, is given by

 

 

According to quantum mechanical hypothesis, the wavefunction  is interpreted as the probability amplitude of

a particle of energy  being at a point . The square of the wavefunction  gives the probability density at

the point, so that the probability of finding the particle anywhere in space given by  is unity.

This is called the normalization of the wavefunction. It is also postulated that the wavefunction and its first derivative
are continuous and single valued.

` Wavefunction of a Free Electron

 The energy- momentum relationship for a free electron is given by

 

 The  relationship (known as the dispersion relation ) is a parabola.



 

 Free Electron Model of a Metal

 

The valence electrons in a metal are detatched from the individual atoms and move in the metal like a gas of free
particles. This leaves the atomic cores positively charged. In the free electron model of a metal, it is assumed that this
positive charge of the cores is uniformly distributed throughout the metal. Such an assumption essentially removes any
details of the crystal structure of the metal. Nevertheless, it is a good starting point in understanding behaviour of
electrons in a metal. 
As the interaction between the electrons themselves are also ignored, one can simply consider the motion of a single
electron which is moving in a constant potential, which can be conveniently taken to be zero. The electron can be
taken to be confined within a box of dimension  within which the potential is constant (taken to be zero)

and outside which it is infinite. The Schrödinger equation for the electron within the box is

 

 Defining , the equation reads

 

 The equation may be solved by separation of variables by substituting

 

 in eqn. (A) and dividing the resulting equation by . We get

 

 
Since  is constant and the first three terms depend upon  separately, the above equation can be satisfied

for all values of  only if each of the three terms is constant, i.e.



 

0

0

0

 with .

 The solutions of the above with boundary condition (i.e. wanishing of wavefunction at the walls) gives

 

 
where ,  being any non-zero positive integer. Thus the complete solution (with normalization

constant) is

 

 and the energy

 

 where  is the volume of the crystal.

 

At absolute zero temperature, electrons fill up available states from minimum energy upwards satisfying Pauli exclusion
principle. Each distinct energy level, specified by a combination of  and  is occupied by two electrons of

opposite spins. The maximum value of energy is known as Fermi energy and is denoted by .

  

 

 Density of States

Density of states at an energy  is the number of states per unit volume available per unit enit energy interval with



 

energy between  and . This would require counting of states, i.e., enumeration of different values of 

 corresponding to the energy of states within this interval. This is obviously a difficult task. However,

given the large dimension of a crystal, the states are very closely packed and and one can essentially treat the 

values as continuous.

 

Equation of constant energy given by eqn. (B) is a sphere in  space with a radius .

As the points in this space are separated from the adjacent ones by one unit in each direction, each point effectively

occupies a volume  in the  space. Thus a unit volume in  space contains  number of

states. As each  state can accommodate two electrons (corresponding to two distinct spin states), the number of

electrons per unit volume of  space is .

 

  

 
Since the constant energy surface in  space is a shhere, we can define Fermi wave vector  as the radius of

a sphere corresponding to the Fermi energy  by

 

 The volume of Fermi sphere being , the number of electrons  that lie within such a sphere is

 

 which gives the density  as equal to



 

 

Using eqn. (C), we can obtain an expression for the density of states . Since, by definition,  is the

number of states lying within energy interval  and , we may simply subtract the number of states below

energy  from the number below . We have

 

  

 The unit of density of states  is (eV)  m .

 Density of States and Fermi Energy

 

 See the animation

 

Free electron theory can be used to explain, reasonably satisfactorily, several qualitative properties of metals, such as,
thermal and electrical conductivity, magnetic properties, heat capacity etc. However, as the theory totally ignores the
crystalline structure of metals, it fails to provide a distinction between metals, semiconductors and insulators. The
atoms in a crystal are arranged in a periodic arrangement. Consequently, the electrons in the crystal are subject to a
periodic potential rather than a uniform potential assumed in the free electron model. If this potential is assumed to be
weak, the electrons do not become completely free but nearly so. The model is known as nearly free electron
model.

 Recap

 In this course you have learnt the following
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Metals have free charge carriers. With increase in temperature, the resistivity of a metal increases.

Pure (intrinsic) semiconductors are very similar to insulators. For a semiconductor, the resistivity decreases with
increase in temperature.

Metals have partially occupied band which allow charge carriers to move even when a small amount of energy is
supplied. Semiconductors have occupied valence band and unoccupied conduction band. Carriers can be thermally
excited from valence band to conduction band.

Insulators are similar to semiconductor in their band structure. However, the band gap is much larger than in a
semiconductor.

Behaviour of simple metals can be described by a free electron theory in which an electron is taken to move in a
constant potential. At zero temperature the electron states are occupied from the lowest energy state to a state of
maximum energy, known as Fermi energy.

Density of state is the number of states per unit volume of a substance per unit energy interval. For free electrons

 the density of state is proportional to the square root of energy.



 
 
 Objectives

 In this course you will learn the following

Intrinsic and extrinsic semiconductors.

Fermi level in a semiconductor.

p-type and n-type semiconductors.

Compensated semiconductors.

Charge neutrality and law of mass action.

 Intrinsic Semiconductors

 

An intrinsic semiconductor is a pure semiconductor, i.e., a sample without any impurity. At absolute zero
it is essentially an insulator, though with a much smaller band gap. However, at any finite temperature
there are some charge carriers are thermally excited, contributing to conductivity. Semiconductors such
as silicon and germanium, which belong to Group IV of the periodic table are covalently bonded with
each atom of Si(or Ge) sharing an electron with four neighbours of the same specis. A bond picture of
silicon is shown in the figure where a silicon atom and its neighbour share a pair of electrons in covalent
bonding.

  

 

 

Gallium belongs to Group III and bonds with arsenic which belongs to Group V to give a III-V
semiconductor. In GaAs, the bonding is partly covalent and partly ionic. Other commonly known III-V
semiconductors are GaN, GaP, InSb etc. Like the III-V compounds, Group II elements combine with
Group VI elements to give semiconductors like CdTe, CdS, ZnS etc. Several industrially useful
semiconductors are alloys such as Al GA As.

 Intrinsic Semiconductors
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The number of carriers in a band at finite temperatures is given by , where 

 is the density of state and  is the Fermi function which gives the

thermal probability. If , we may ignore the term 1 in the denominator of the Fermi

function and approximate it as

 

 Using this the density of electrons in the conduction band ( ) may be written as follows.

 

 where we have substituted

 

 
The integral  is a gamma function  whose value is . Substituting this

value, we get for the density of electrons in the conduction band

 

 where

 

 
One can in a similar fashion one can calculate the number density of holes, , by evaluating the

expression

 



 

where  is the Fermi function for the occupancy of holes which is the same as

the probability that an electron state at energy  is unoccupied. For , the density

of holes is given by

 

 where

 

 The following table gives generally accepted values of some of the quantities associated with the three
most common semiconductors at room temperature (300 K).

 

 

  

 in eV /m /m /m 

Si 1.12 1.08 0.56

       

Ge 0.66 0.55 0.37

       

GaAs 1.4 0.04 0.48

       

 Exercise 1

 Derive expression (B).

 
For an intrinsic semiconductor the number of electrons in the conduction band is equal to the number of
holes in the valence band since a hole is left in the valence band only when an electron makes a
transition to the conduction band,

 

 Using this and assuming that the effective masses of the electrons and holes are the same one gets

 

 



 

 giving

 

 
i.e. the Fermi level lies in the middle of the forbidden gap . Note that there is no contradiction with
the fact that no state exists in the gap as  is only an energy level and not a state.

 
By substituting the above expression for Fermi energy in (A) or (B), we obtain an expression for the
number density of electrons or holes ( )

 

 where  is the width of the gap.

 Exercise 2

 Derive the expression (D).

 Exercise 3

 

For a two band model of silicon, the band gap is 1.11 eV. Taking the effective masses of electrons and
holes as  and , calculate the intrinsic carrier concentration in silicon

at 300 K.

(Ans.  m .)

 

Show that, if the effective masses of electrons and holes are not equal, the position of the Fermi energy
for an intrinsic semiconductor is given by

Exercise 2

Exercise 1



 

 Current in an intrinsic semiconductor

 
For semiconductors both electrons and holes contribute to electric current. Because of their opposite
charge, their contribution to the current add up. For an intrinsic semiconductor with a single valence
band and a conduction band, the current density is given by

 

 
where  and  are respectively the electron density and speed while  and  are the hole density

and speed. Using  and  and the fact that , we have

 

 which gives the conductivity as

 

 

 
Estimate the electrical conductivity of intrinsic silicon at 300 K, given that the electron and hole

mobilities are  m /V-s and  m /V-s.

 Solution

 The conductivity arises due to both electrons and holes

 

 The intrinsic carrier concentration  was calculated to be  at 300 K. Thus

 

  

 

 

A sample of an intrinsic semiconductor has a band gap of 0.7 eV, assumed independent of temperature.

Taking  and , find the relationship between the conductivity at 200 K and

300 K.

(Ans. ratio of conductivity = 2014.6,  eV )

Extrinsic Semiconductors

An extrinsic semiconductor is formed by adding impurities, called dopants to an intrinsic semiconductor
to modify the former's electrical properties. There are two types of such impurities - those which provide
electrons as majority carriers are known as n-type and those which provide holes as majority carriers
are known as p-type .

Using this and assuming that the effective masses of the electrons and holes are the same one gets

n- type Semiconductors

Consider a matrix of silicon where the atoms are covalently bonded.

Example 1

Exercise 3



 

 
If we add a pentavalent atom (As, P etc.) as an impurity, the dopant atom replaces a silicon atom
substitutionally. As the dopant has five electrons, only four of these can be used in forming covalent
bonds while the fifth electron is loosely bonded to the parent atom. This electron can become detached
from the dopant atom by absorbing thermal energy.

 

                    

 

In the band picture, the energy level of the additional electron lies close to the bottom of the conduction
band. Such an energy level  is called a donor level as it can donate an electron to the empty

conduction band by thermal excitation. We may see this by assuming that the fifth electron of the donor
is orbiting around a hydrogen-like nucleus consisting of the core of the donor atom with the following
modifications made into the formula for the energy of an electron in the hydrogen atom.

 



permittivity of the free space  is replaced by , the permittivity of the medium (silicon).

free electron mass being replaced by the effective mass of the donor electron.

 Recalling that the energy of an electron in the the hydrogen atom is given by

 

 

where , we need to replace  by  and  by , where  is the

relative dielectric constant of the medium. Using  for Si and , the free electron

mass, the ionization energy of the electron bound to the donor atom is  eV, if

the electron is in the ground state. Thus the donor energy level lies close to the bottom of the
conduction band. In case of semiconductors, the donor ionization energy is defined as the energy
required to elevate the donor electron to the conduction band.

 

 

Calculate the ionization energy of a donor impurity in Ge. The effective mass of electrons is 

and the dielectric constant is 16.

(6.4 meV)

 p- type Semiconductors

 
If the Si matrix is doped with Group III impurities like boron or aluminium, it cannot provide electrons to
complete the covalent bonds. However, the impurity readily accepts an electron from a nearby Si-Si
bond to complete its own bonding scheme. A hole is thereby created which can freely propagate in the
lattice.

  

 

Exercise 4



 

In the band picture, the acceptor energy level  lies close to the top of the valence band. Electrons

near the top of the valence band can be thermally excited to the acceptor level leaving holes near the
top of the valence band. In these semiconductors, known as P-type semiconductors, the primary current
is due to majority carriers which are holes.

  

 

 

 In an n-type semiconductor 25% of the donor atoms are ionized at 300 K. Determine the location of the
Fermi level with respect to the donor level.

 Solution

 As 25% of donor atoms are ionized, the occupation probability of donor level is 0.75. Thus

 

Example 2



 Solving,  eV.

 

 

In a p-type semiconductor 40% of atoms are ionized at 300 K. Find the location of the Fermi level with
respect to the acceptor level.

(  eV)

 
A compensated semiconductor contains both donor and acceptor impurities. The compensation is said
to be complete if  in which case the semiconductor behaves like an intrinsic semiconductor.

 
 Solution

 Given

 

 
we get . Using  eV corresponding to room

temperature, we get  eV. Rewriting this as

 

 which gives . The occupation probability of the donor level is

 

 Thus 71% of donor atoms are ionized. The Fermi level is situated 0.0236 eV below the donor level.

 Condition of Charge Neutrality

 In the absence of an electric field, a bulk material is charge neutral. Let

  number density of electrons

  number density of holes

 For an intrinsic semiconductor  so that the number density of electrons may be written as

 

 

Let the density of donor atoms be denoted by  and that of acceptor atoms by . If the

corresponding densities of ionized donors and acceptors are  and  respectively, the charge

neutrality condition for the bulk sample becomes

 

 If all the donors and acceptors are ionized, then,

 

Exercise 5



 Using , we get

 

 Thus we get a quadratic equation for the electron density

 

 with solution

 

 Example 10

 
Pure germanium has a band gap of 0.67 eV. It is doped with  per m  of donor atoms. Find

the densities of electrons and holes at 300 K. (effective masses )

 Solution

 For Ge, the intrinsic concentration is

 

 

Substituting given numerical values, . The density of donor atoms is 

 /m . Thus the electron density  is given by

 

 
Thus . Using , we get, for the density of holes 

.

 Exercise 8

 

A sample of Ge at 300 K is doped with  of donor atoms and 

acceptor atoms. Find the densities of electrons and holes at 300 K.

(Ans. ,  )

 Fermi Energy

 Let  be the Fermi level for a n-type semiconductor. The electron density is given by



 

 where

 

 We may rewrite the above equation as follows. Denoting the intrinsic Fermi energy as ,

 

 
where  is the intrinsic electron density. In a similar way one can show that for  type impurities, the

concentration of holes is given by

 

 where  is intrinsic hole density. Thus

 

 This relationship is known as the Law of Mass Action .

 
Taking the logarithm of the equations for  and , the shift in the Fermi energies due to doping for n-

type and p-type semiconductors are given by
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