
Black-body radiation 

Black body also known as an ideal emitter is an object capable of emitting and absorbing 

all frequencies of radiation uniformly. A hot object emits always electromagnetic radiation and at 

high temperatures, an appreciable proportion of the radiation is in the visible region of the 

spectrum, and a higher proportion of short-wavelength blue light is generated as the temperature 

is raised. This behaviour is seen when a heated iron bar glowing red hot becomes white hot when 

heated further. The dependence is illustrated in Fig. 1, which shows how the energy output varies 

with wavelength at several temperatures. Energy density increases in the region of shorter 

wavelengths as the temperature is raised, and the peak shifts to shorter wavelengths. The total 

energy density (the area under the curve) increases as the temperature is increased. 

 

Fig. 1: The energy distribution in a blackbody cavity at several temperatures. 

A good approximation to a black body is a pinhole in an empty container maintained at a 

constant temperature, because any radiation leaking out of the hole has been absorbed and re-

emitted inside so many times that it has come to thermal equilibrium with the walls as shown in 

Fig. 2. 

 



 

Fig. 2: An experimental representation of a black-body is a pinhole in an closed container. 

The explanation of black-body radiation was theoretically given by physicist Lord Rayleigh who 

studied it from a classical viewpoint, and thought of the electromagnetic field as a collection of 

oscillators of all possible frequencies. He regarded the presence of radiation of frequency ν (and 

therefore of wavelength λ = c/ν) as signifying that the electromagnetic oscillator of that 

frequency had been excited. Rayleigh used the equipartition principle to calculate the average 

energy of each oscillator as kT. Then, with minor help from James Jeans, he arrived at the 

Rayleigh–Jeans law as 

 

where ρ (rho), the density of states, is the proportionality constant between dλ and the energy 

density, dE, in the range of wavelengths between λ and λ + dλ, k is Boltzmann’s constant (k = 

1.381 × 10
−23

 J K
−1

). 

Unfortunately (for Rayleigh, Jeans, and classical physics), although the Rayleigh–Jeans 

law is quite successful at long wavelengths (low frequencies), it fails badly at short wavelengths 

(high frequencies). Thus, as λ decreases, ρ increases without going through a maximum The 

equation therefore predicts that oscillators of very short wavelength (corresponding to ultraviolet 

radiation, X-rays, and even γ-rays) are strongly excited even at room temperature. This absurd 

result, which implies that a large amount of energy is radiated in the high-frequency region of the 

electromagnetic spectrum, is called the ultraviolet catastrophe. According to classical physics, 

even cool objects should radiate in the visible and ultraviolet regions, so objects should glow in 

the dark; there should in fact be no darkness. 



The Planck distribution 

The German physicist Max Planck studied black-body radiation from the viewpoint of 

thermodynamics. In 1900 he found that he could account for the experimental observations by 

proposing that the energy of each electromagnetic oscillator is limited to discrete values and 

cannot be varied arbitrarily. This proposal is quite contrary to the viewpoint of classical physics 

(on which the equipartition principle used by Rayleigh is based), in which all possible energies 

are allowed. The limitation of energies to discrete values is called the quantization of energy. In 

particular, Planck found that he could account for the observed distribution of energy if he 

supposed that the permitted energies of an electromagnetic oscillator of frequency ν are integer 

multiples of hν: 

 
where h is a fundamental constant now known as Planck’s constant. On the basis of this 

assumption, Planck was able to derive the Planck distribution: 

 
This expression fits the experimental curve very well at all wavelengths (Fig. 1), and the value of 

h, which is an undetermined parameter in the theory, may be obtained by varying its value until a 

best fit is obtained. The currently accepted value for h is 6.626 × 10
−34

 J s known as Planks 

constant. 

 
Fig. 1: The Planck distribution of black-body radiation 



The Planck distribution resembles the Rayleigh–Jeans law (eqn 8.3) apart from the all-

important exponential factor in the denominator. For short wavelengths, hc/λkT >> 1 and 

e
hc/λkT

→∞ faster than λ
5
→0; therefore ρ→0 as λ→0 or ν→∞. Hence, the energy density 

approaches zero at high frequencies, in agreement with observation. For long wavelengths, 

hc/λkT << 1, and the denominator in the Planck distribution can be replaced by 

 
When this approximation is substituted into above Planck distribution equation, it reduces 

to the Rayleigh–Jeans law. 

It is quite easy to see why Planck’s approach was successful while Rayleigh’s was not. 

The thermal motion of the atoms in the walls of the black body excites the oscillators of the 

electromagnetic field. According to classical mechanics, all the oscillators of the field share 

equally in the energy supplied by the walls, so even the highest frequencies are excited. The 

excitation of very high frequency oscillators results in the ultraviolet catastrophe. According to 

Planck’s hypothesis, however, oscillators are excited only if they can acquire energy of at least 

hν. This energy is too large for the walls to supply in the case of the very high frequency 

oscillators, so the latter remain unexcited. The effect of quantization is to reduce the contribution 

from the high frequency oscillators, for they cannot be significantly excited with the energy 

available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Heat capacities of solids 

In the early nineteenth century, the French scientists Pierre-Louis Dulong and Alexis- 

Thérèse Petit determined the heat capacities of a number of monatomic solids. On the basis of 

some somewhat slender experimental evidence, they proposed that the molar heat capacities of 

all monatomic solids are the same and (in modern units) close to 25 J K
−1

 mol
−1

. 

Dulong and Petit’s law is easy to justify in terms of classical physics. If classical physics 

were valid, the equipartition principle could be used to calculate the heat capacity of a solid. 

According to this principle, the mean energy of an atom as it oscillates about its mean position in 

a solid is kT for each direction of displacement. As each atom can oscillate in three dimensions, 

the average energy of each atom is 3kT; for N atoms the total energy is 3NkT. The contribution 

of this motion to the molar internal energy is therefore: 

 
because NAk = R, the gas constant. The molar constant volume heat capacity (see 

Comment 8.3) is then predicted to be 

 
This result, with 3R = 24.9 J K

−1
 mol

−1
, is in striking accord with Dulong and Petit’s 

value. 

Unfortunately it was found that the molar heat capacities of all monatomic solids are 

lower than 3R at low temperatures, and that the values approach zero as T → 0. To account for 

these observations, Einstein (in 1905) assumed that each atom oscillated about its equilibrium 

position with a single frequency ν. He then invoked Planck’s hypothesis to assert that the energy 

of oscillation is confined to discrete values, and specifically to nhν, where n is an integer. 

Einstein first calculated the contribution of the oscillations of the atoms to the total molar energy 

of the metal and obtained 

 
in place of the classical expression 3RT. Then he found the molar heat capacity by 

differentiating Um with respect to T. The resulting expression is now known as the Einstein 

formula: 

 
The Einstein temperature, θE = hν/k, is a way of expressing the frequency of oscillation 

of the atoms as a temperature: a high frequency corresponds to a high Einstein temperature. 

At high temperatures (when T >> θE) the exponentials in f can be expanded as 1 + θE/T + 

· · · and higher terms ignored. The result is 



 
Consequently, the classical result (CV,m = 3R) is obtained at high temperatures. At low 

temperatures, when T << θE, 

 
The strongly decaying exponential function goes to zero more rapidly than 1/T goes to 

infinity; so f → 0 as T → 0, and the heat capacity therefore approaches zero too. Thus we see 

that Einstein’s formula accounts for the decrease of heat capacity at low temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Atomic spectra 

The most compelling evidence for the quantization of energy comes from spectroscopy, 

the detection and analysis of the electromagnetic radiation absorbed, emitted, or scattered by a 

substance. The record of the intensity of light intensity transmitted or scattered by a molecule as 

a function of frequency (ν), wavelength (λ), or wavenumber (  = ν/c) is called its spectrum. 

 
Fig. 1: A series of discrete wavelengths of the spectrum of radiation emitted by excited 

atoms 

 

A typical atomic spectrum is shown in Fig. 1 where it is observed that radiation is emitted 

or absorbed at a series of discrete frequencies. This observation can be understood if the energy 

of the atoms is also confined to discrete values, for then energy can be discarded or absorbed 

only in discrete amounts (Fig. 2). Then, if the energy of an atom decreases by ΔE, the energy is 

carried away as radiation of frequency ν, and an emission ‘line’, a sharply defined peak, appears 

in the spectrum. We say that an atom undergoes a spectroscopic transition, a change of state, 

when the Bohr frequency condition  is fulfilled. 



 
Fig. 2: Spectroscopic transitions for the atom emits a photon as it changes between 

discrete energy levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Schrödinger wave equation 

Schrodinger wave equation is given by Erwin Schrödinger in 1926 and based on dual 

nature of electron. In it electron is described as a three dimensional wave in the electric field of a 

positively charged nucleus. The probability of finding an electron at any point around the nucleus 

can be determined by the help of Schrodinger wave equation which is, 
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 Where yx,  and z are the 3 space co-ordinates, m = mass of electron, h = Planck’s constant, 

E = Total energy, V = potential energy of electron,  = amplitude of wave also called as wave 

function,   = for an infinitesimal change. 

 The Schrodinger wave equation  can also be written as, 

0)(
8

2

2
2  VE

h

m
 

 Where = laplacian operator. 

 

Physical significance of   and 2  

 The wave function may be regarded as the amplitude function expressed in terms of 

coordinates x, y and z. The wave function may have positive or negative values depending upon 

the value of coordinates. The main aim of Schrodinger equation is to give solution for probability 

approach. When the equation is solved, it is observed that for some regions of space the value of  

 is negative. But the probability must be always positive and cannot be negative, it is thus, 

proper to use 
2
 in favour of . 

 
2
 is a probability factor. It describes the probability of finding an electron within a small 

space. The space in which there is maximum probability of finding an electron is termed as 

orbital. The important point of the solution of the wave equation is that it provides a set of 

numbers called quantum numbers which describe energies of the electron in atoms, information 

about the shapes and orientations of the most probable distribution of electrons around nucleus. 

 



1.1 Basic notions of operator algebra.

x̂ and p̂ = −ih̄∇

they are called “fundamental operators”.
Many operators are constructed from x̂ and p̂; for example the Hamiltonian for a single particle:

Ĥ =
p̂2

2m
+ V̂ (x̂)

where p̂2/2m is the K.E. operator and V̂ is the P.E. operator. This example shows that we can
add operators to get a new operator. So one may ask what other algebraic operations one can
carry out with operators?
The product of two operators is defined by operating with them on a function.
Let the operators be Â and B̂, and let us operate on a function f(x) (one-dimensional for
simplicity of notation). Then the expression

ÂB̂f(x)

is a new function. We can therefore say, by the definition of operators, that ÂB̂ is an operator
which we can denote by Ĉ:

Ĉ is the product of operators Â and B̂.

The meaning of ÂB̂f(x) should be that B̂ is first operating on f(x), giving a new function,
and then Â is operating on that new function.

Example: Â = x̂ and B̂ = p̂ = −ih̄d/dx, then we have

ÂB̂f(x) = x̂p̂f(x)

We can of course also construct another new operator:

p̂x̂

Then, by definition of the operator product,

p̂x̂f(x)

means that x̂ is first operating on f(x) and then p̂ is operating on the function x̂f(x).
Compare the results of operating with the products p̂x̂ and x̂p̂ on f(x):

(x̂p̂− p̂x̂)f(x) = −ih̄

(

x
df(x)

dx
−

d

dx
(xf(x))

)

and hence by the product rule of differentiation:

(x̂p̂− p̂x̂)f(x) = ih̄f(x)
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and since this must hold for any differentiable function f(x), we can write this as an operator

equation:
x̂p̂− p̂x̂ = ih̄

Thus we have shown that the operator product of x̂ and p̂ is non-commuting.

Because combinations of operators of the form

ÂB̂ − B̂Â

do frequently arise in QM calculations, it is customary to use a short-hand notation:

[Â, B̂] ≡ ÂB̂ − B̂Â

and this is called the commutator of Â and B̂ (in that order!).
If [Â, B̂] 6= 0, then one says that Â and B̂ do not commute,
if [Â, B̂] = 0, then Â and B̂ are said to commute with each other.
An operator equation of the form of

[Â, B̂] = something

is called a commutation relation.
[x̂, p̂] = ih̄

is the fundamental commutation relation.

1.2 Eigenfunctions and eigenvalues of operators.

We have repeatedly said that an operator is defined to be a mathematical symbol that applied
to a function gives a new function.

Thus if we have a function f(x) and an operator Â, then

Âf(x)

is a some new function, say φ(x).
Exceptionally the function f(x) may be such that φ(x) is proportional to f(x); then we

have
Âf(x) = af(x)

where a is some constant of proportionality. In this case f(x) is called an eigenfunction of Â
and a the corresponding eigenvalue.

Example: Consider the function f(x, t) = ei(kx−ωt).
This represents a wave travelling in x direction.
Operate on f(x) with the momentum operator:

p̂f(x) = −ih̄
d

dx
f(x) = (−ih̄)(ik)ei(kx−ωt)

= h̄kf(x)

and since by the de Broglie relation h̄k is the momentum p of the particle, we have

p̂f(x) = pf(x)

Note that this explains the choice of sign in the definition of the momentum operator!



1.3 Linear operators.

An operator Â is said to be linear if

Â(cf(x)) = cÂf(x)

and

Â(f(x) + g(x)) = Âf(x) + Âg(x)

where f(x) and g(x) are any two appropriate functions and c is a complex constant.
Examples: the operators x̂, p̂ and Ĥ are all linear operators. This can be checked by explicit
calculation (Exercise!).

1.4 Hermitian operators.

The operator Â† is called the hermitian conjugate of Â if
∫

(

Â†ψ
)∗
ψdx =

∫

ψ∗Âψdx

Note: another name for “hermitian conjugate” is “adjoint”.

The operator Â is called hermitian if
∫

(

Âψ
)∗
ψ dx =

∫

ψ∗Âψ dx

Examples:

(i) the operator x̂ is hermitian. Indeed:
∫

(x̂ψ)∗ ψ dx =
∫

(xψ)∗ ψ dx =
∫

ψ∗ xψ dx =
∫

ψ∗ x̂ψ dx

(ii) the operator p̂ = −ih̄d/dx is hermitian:

∫

(p̂ψ)∗ ψ dx =
∫

(

−ih̄
dψ

dx

)∗

ψ dx

= ih̄
∫

(

dψ

dx

)∗

ψ dx

and after integration by parts, and recognizing that the wfn tends to zero as x → ∞, we get
on the right-hand side

−ih̄
∫

ψ∗dψ

dx
dx =

∫

ψ∗p̂ψ dx

(iii) the K.E. operator T̂ = p̂2/2m is hermitian:

∫

(

T̂ψ
)∗
ψ dx =

1

2m

∫

(

p̂2ψ
)∗
ψ dx

=
1

2m

∫

(p̂ψ)∗ p̂ψ dx

=
1

2m

∫

ψ∗p̂2ψ dx

=
∫

ψ∗T̂ψ dx



(iv) the Hamiltonian is hermitian:
Ĥ = T̂ + V̂ (x̂)

here V̂ is a hermitian operator by virtue of being a function of the hermitian operator x̂, and
since T̂ has been shown to be hermitian, so Ĥ is also hermitian.

Theorem: The eigenvalues of hermitian operators are real.
Proof: Let ψ be an eigenfunction of Â with eigenvalue a:

Âψ = aψ

then we have ∫

(

Âψ
)∗
ψ dx =

∫

(aψ)∗ ψ dx = a∗
∫

ψ∗ψ dx

and by hermiticity of Â we also have

∫

(

Âψ
)∗
ψ dx =

∫

ψ∗Âψ dx = a
∫

ψ∗ψ dx

hence
(a∗ − a)

∫

ψ∗ψ dx = 0

and since
∫

ψ∗ψ dx 6= 0, we get
a∗ − a = 0

The converse theorem also holds: an operator is hermitian if its eigenvalues are real.
The proof is left as an exercise.

Note: by virtue of the above theorems one can define a hermitian operator as an operator with
all real eigenvalues.

Corollary: The eigenvalues of the Hamiltonian are real.
In fact, since by definition the Hamiltonian has the dimension of energy, therefore the eigen-
values of the Hamiltonian are the energies of the system described by the wave function.

1.5 Expectation values.

Consider a system of particles with wave function ψ(x)
(x can be understood to stand for all degrees of freedom of the system; so, if we have a system
of two particles then x should represent
{x1, y1, z1; x2, y2, z2}).

The expectation value of an operator Â that operates on ψ is defined by

〈Â〉 ≡
∫

ψ∗ Âψ dx

If ψ is an eigenfunction of Â with eigenvalue a, then, assuming the wave function to be
normalized, we have

〈Â〉 = a



Now consider the rate of change of the expectation value of Â:

d〈Â〉

dt
=

∫

∂

∂t

(

ψ∗ Â ψ
)

dx

=
∫

{

∂ψ∗

∂t
Âψ + ψ∗∂Â

∂t
ψ + ψ∗Â

∂ψ

∂t

}

dx

=

〈

∂Â

∂t

〉

+
i

h̄

∫

{(

Ĥψ
)∗
Âψ − ψ∗ÂĤψ

}

dx

where we have used the Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ

Now by hermiticity of Ĥ we get on the r.h.s.:

i

h̄

∫

{

ψ∗ĤÂψ − ψ∗ÂĤψ
}

dx

=
i

h̄

∫

ψ∗
(

ĤÂ− ÂĤ
)

ψ dx

hence
d〈Â〉

dt
=

〈

∂Â

∂t

〉

+
i

h̄
〈[Ĥ, Â]〉

Of particular interest in applications are linear hermitian operators that do not explicitly depend
on time, i.e. such that

∂Â/∂t = 0

For this class of operators we get the following equation of motion:

ih̄
d〈Â〉

dt
= 〈[Â, Ĥ]〉

Here the expectation values are taken with arbitrary square integrable functions. Therefore we
can re-write this equation as an operator equation:

ih̄
dÂ

dt
= [Â, Ĥ]

If in particular Â is an observable that commutes with Ĥ, i.e. if [Â, Ĥ] = 0, then

dÂ

dt
= 0

i.e. Â is a conserved observable.

We can also prove the following theorem:
if two operators Â and B̂ commute, then they have common eigenfunctions.
Proof: Let ψ be an eigenfunction of Â with eigenvalue a:

Âψ = aψ



operating on both sides with B̂ we get

B̂(Âψ) = aB̂ψ

on the l.h.s. we can write B̂Âψ, and then since by assumption Â and B̂ commute, we get

ÂB̂ψ = aB̂ψ

thus B̂ψ is an eigenfunction of Â with the same eigenvalue as ψ; therefore B̂ψ can differ from
ψ only by a constant factor, i.e. we must have

B̂ψ = bψ

i.e. ψ is also an eigenfunction of B̂.

The converse theorem is also true but not as useful; I shall therefore omit the proof.

1.6 Angular momentum.

Often operators can be constructed by taking the corresponding dynamical variable of classical
mechanics, which is expressed in terms of coordinates and momenta, and replacing x by x̂, p
by p̂ etc. That was in fact the way we have constructed the Hamiltonian.

Now we apply this prescription to angular momentum.
In classical mechanics one defines the angular momentum by

~L = ~r × ~p

We get the angular momentum operator by replacing the vector ~r by the vector operator
r̂ = (x̂, ŷ, ẑ) and the momentum vector by the momentum vector operator

p̂ = −ih̄∇ = −ih̄(∂x, ∂y, ∂z)

where ∂x = ∂/∂x etc.

The complete fundamental commutation relations of the coordinate and momentum operators
are

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = ih̄

and
[x̂, p̂y] = [x̂, p̂z] = . . . = [ẑ, p̂y] = 0

It will be convenient to use the following notation:
x̂1 = x̂, x̂2 = ŷ, x̂3 = ẑ

and
p̂1 = p̂x, p̂2 = p̂y, p̂3 = p̂z

we can then summarize the fundamental commutation relations by

[x̂i, p̂j] = ih̄δij

where δij is the Kronecker symbol:

δij =

{

1 if i = j
0 if i 6= j



We can now find the commutation relations for the components of the angular momentum
operator. To do this it is convenient to get at first the commutation relations with x̂i, then
with p̂i, and finally the commutation relations for the components of the angular momentum
operator.

Thus consider the commutator [x̂, L̂x]: we have L̂x = ŷp̂z − ẑp̂y, and hence by the fundamental
commutation relations

[x̂, L̂x] = 0

Next consider [x̂, L̂y]: we have

L̂y = ẑp̂x − x̂p̂z

hence
[x̂, L̂y] = [x̂, ẑp̂x] − [x̂, x̂p̂z] = ih̄ẑ

and similarly
[x̂, L̂z] = −ih̄ŷ

etc. We can summarize the nine commutation relations:

[x̂i, L̂j] = ih̄εijkx̂k

where

εijk =











1 if (ijk) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)
−1 if (ijk) = (1, 3, 2) or (3, 2, 1) or (2, 1, 3)
0 if i = j or i = k or j = k

and summation over the repeated index k is implied.

Similarly one can show
[p̂i, L̂j] = ih̄εijkp̂k

after which it is straight forward to deduce:

[L̂i, L̂j] = ih̄εijkL̂k

The important conclusion from this result is that the components of angular momentum have

no common eigenfunctions.

Of course, we must also show that the angular momentum operators are hermitian. This is
of course plausible (reasonable) since we know that the angular momentum is a dynamical
variable in classical mechanics. The proof is left as an exercise.

We can construct one more operator that commutes with all components of L̂: define the square
of L̂ by

L̂2 = L̂2
x + L̂2

y + L̂2
z

then

[L̂x, L̂
2] = [L̂x, L̂

2
x + L̂2

y + L̂2
z]

= [L̂x, L̂
2
y] + [L̂x, L̂

2
z]



Now there is a simple technique to evaluate a commutator like [L̂x, L̂
2
y]: write down explicitly

the known commutator [L̂x, L̂y]:

L̂xL̂y − L̂yL̂x = ih̄L̂z

multiply this on the left by L̂y, then multiply on the right by L̂y:

L̂yL̂xL̂y − L̂2
yL̂x = ih̄L̂yL̂z

L̂xL̂
2
y − L̂yL̂xL̂y = ih̄L̂zL̂y

and if we add these commutation relations we get

L̂xL̂
2
y − L̂2

yL̂x = ih̄(L̂yL̂z + L̂zL̂y)

and similarly
L̂xL̂

2
z − L̂2

zL̂x = −ih̄(L̂yL̂z + L̂zL̂y)

hence
[L̂x, L̂

2] = 0

and similarly
[L̂y, L̂

2] = [L̂z, L̂
2] = 0

Finally one can also show that the components of L̂ and L̂2 commute with p̂2, and therefore
also with the K.E. operator T̂ , and that they commute with r and hence with any function of
r.

The latter statement is most easily shown by working in spherical polar coordinates (r, θ, ϕ),
where θ is the polar angle and ϕ the azimuth. If we choose the polar axis along the cartesian z
direction, then we get after some tedious calculation the following expressions for the angular
momentum components:

L̂x = ih̄

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

L̂y = ih̄

(

− cosϕ
∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)

L̂z = −ih̄
∂

∂ϕ

We can therefore conclude that the angular momentum operators commute with the Hamilto-
nian of a particle in a central field, for example a Coulomb field, and that implies that L̂2 and
one of the components can be chosen to have common eigenfunctions with the Hamiltonian.



First we will consider a free particle moving in 1D so V (x) = 0. The
TDSE now reads

−
~

2

2m

d2ψ(x)

dx2
= Eψ(x)

which is solved by the function

ψ = Aeikx

where

k = ±
√

2mE

~

A general solution of this equation is

ψ(x) = Aeikx +Be−ikx

where A and B are arbitrary constants. It can also be written in terms of
sines and cosines as

ψ(x) = C sin(kx) +D cos(kx)

The constants appearing in the solution are determined by the boundary
conditions. For a free particle that can be anywhere, there is no boundary
conditions, so k and thus E = ~

2k2/2m can take any values. The solution
of the form eikx corresponds to a wave travelling in the +x direction and
similarly e−ikx corresponds to a wave travelling in the -x direction. These
are eigenfunctions of the momentum operator. Since the particle is free, it is
equally likely to be anywhere so ψ∗(x)ψ(x) is independent of x. Incidently,
it cannot be normalized because the particle can be found anywhere with
equal probability.

Particle in a 1D Box



Now, let us confine the particle to a region between x = 0 and x = L. To
do this, we choose our interaction potential V (x) as follows

V (x) = 0 for 0 ≤ x ≤ L

= ∞ otherwise

It is always a good idea to plot the potential energy, when it is a function of
a single variable, as shown in Fig.1. The TISE is now given by

0 L

V=infinity V=0 V=infinity

V(x)

x

−
~

2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

First consider the region outside the box where V (x) = ∞. Since V (x)ψ(x)
has to be finite for finite energy, we insist that ψ(x) = 0. In other words, the
particle cannot go outside the box.

In the box, we have the TISE given by the free particle term

−
~

2

2m

d2ψ(x)

dx2
= Eψ(x)

now subjected to the boundary conditions given by

ψ(0) = ψ(L) = 0



Thus, we take the general solution

ψ(x) = A sin(kx) +B cos(kx)

If we put x = 0, we get ψ(0) = B = 0. If we now put ψ(L) = 0, we get

A sin(kL) = 0 ork =
nπ

L

where n is any integer. Clearly n = 0 is not valid as the wavefunction van-
ishes. Also, we see that changing the sign of n simply changes the sign of the
wavefunction and as we said before, it does not produce a new wavefunction.

Thus the solution of the TISE that satisfies the boundary condition is
written as

ψn(x) = A sin(
nπx

L
) where n = 1, 2, 3, ...

The constant A is determined by the normalization condition to be
√

2/L.
The corresponding energy is given by

En =
~

2k2

2m
=

n2h2

8mL2

so we have quantization of energy with

E1 =
~

2k2

2m
E2 =

4~
2k2

2m

and so on. Notice that the lowest possible energy is not zero. This is referred
to as zero point energy. The first few wavefunctions are plotted schematically
as shown below. Notice that as the quantum number increases, the wave-
function becomes more oscillatory. For n = 2, the wavefunction is zero at the
midpoint of the box x = L/2. This point is a node of this wavefunction. A
node refers to a point (other than boundary points) where the wavefunction
goes to zero. For the particle in a 1D box, we see that the number of nodes
is equal to n− 1.

Though the particle in a 1D box is a simple model system, it illustrates the
important features of a quantum mechanical description. It is a very useful
first approximation to the behavior of π electrons in conjugated alkenes.



 

Molecular orbital theory 
 
Valence bond theory gave us a qualitative picture of chemical bonding. 
Useful for predicting shapes of molecules, bond strengths, etc. 
It fails to describe some bonding situations accurately because it ignores the wave nature of the 
electrons. 
 
Molecular orbital (MO) theory has the potential to be more quantitative. 
 
Usually we settle for simplified models here too.  These simple models do not give very accurate 
orbital and bond energies, but they do explain concepts such as resonance (e.g., in the ferrocene 
molecule) that are hard to represent otherwise.  We can get accurate energies from MO theory by 
computational "number crunching." 
 
While MO theory is more "correct" than VB theory and can be very accurate in predicting the 
properties of molecules, it is also rather complicated even for fairly simple molecules.  For 
example, you should have no trouble drawing the VB pictures for CO, NH3, and benzene, but we 
will find that these are increasingly challenging with MO theory. 

 
Constructing the molecular orbitals for a molecule: 
 
We use atomic orbitals (AO) as a basis for constructing MO's. 
 
LCAO-MO = linear combination of atomic orbitals 
Physicists call this the "tight binding approximation." 
 
The molecular orbitals, also called wavefunctions (ψ), are obtained by adding and subtracting 
atomic orbitals (φ).  The φ's are multiplied by scalar coefficients (c) to give normalized linear 
combinations.   
 
For example, to make MO's from two AO's φ1 and φ1, we write: 
 
ψ± = c1φ1 ± c2φ2, or 
 
ψ1 = c1φ1 + c2φ2    and  ψ2 = c1φ1 - c2φ2       
 
 
e.g.,        

  
  ± 
 

 
 
atomic orbital 1           atomic orbital 2                                      
  e.g., H 1s                    e.g., Cl 3pz 
    φ1(x,y,z)       φ2(x,y,z) 

nodes 

Bonding   ψ1 

Antibonding ψ2 



 

 
Nodes. The wavefunctions φ and ψ are probability amplitudes. They have lobes with (+) or (-) 
signs, which we indicate by shading or color.  Wherever the wavefunction changes sign we have 
a node.  As you can see in the picture above, nodes in MOs result from destructive interference 
of (+) and (-) wavefunctions.  Generally, the more nodes, the higher the energy of the orbital. 
 
In this example we have drawn a simplified picture of the Cl 3pz orbital and the resulting MOs, 
leaving out the radial node.  Recall that 2p orbitals have no radial nodes, 3p orbitals have one, 4p 
have two, etc.  The MOs we make by combining the AOs have these nodes too. 
 
          2p           3p 
 
 
Normalization.  We square the wave functions to get probabilities, which are always positve or 
zero.  So if an electron is in orbital φ1, the probability of finding it at point xyz is the square of 
φ1(x,y,z).  The total probability does not change when we combine AOs to make MOs, so for the 
simple case of combining φ1 and φ2 to make ψ1 and ψ2, 
 
ψ1

2 + ψ2
2 = φ1

2 + φ2
2 

 
Overlap integral and c values.  The spatial overlap between two atomic orbitals φ1 and φ1 is 
described by the overlap integral S,  
 

 

S = !1" !2d#  where the integration is over all space (dτ = dxdydz). 
 
From the normalization criterion we get: 
 

 

!1 = 1
2
( 1
1+ S

)("1 + "2)  (bonding orbital) 

 
and 
 

 

!2 = 1
2
( 1
1" S

)(#1 "#2)   (antibonding orbital) 

 

In the case where S=0, this simplifies to c1 = c2 = 

 

1
2

. 

 
Energies of bonding and antibonding MOs:   
 
The energies of the bonding and antibonding molecular orbitals (ψ1, ψ2) are lower and higher, 
respectively, than the energies of the atomic basis orbitals φ1 and φ2.   
 



For the simple case where φ1 and φ2 have the same energy (e.g., the two H 1s orbitals that 
combine to make the MO’s of the H2 molecule) we have the following picture: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The energy of an electron in one of the atomic orbitals is α, the Coulomb integral.   
 

 

! = "1# H"1d$ = "2# H"2d$  , where H is the Hamiltonian operator.  Essentially, α represents 
the ionization energy of an electron in atomic orbital φ1 or φ2. 
 
The energy difference between an electron in the AO’s and the MO’s is determined by the 
exchange integral β, 
 

 

! = "1# H"2d$  
 

  Note that the bonding orbital is stabilized by an energy 

 

!
1+ S

 and the antibonding orbital is 

destabilized by !
1" S

.  That is, the antibonding orbital goes up in energy more than the bonding 

orbital goes down.  This means that H2 (ψ1
2ψ2

0) is energetically more stable than two H atoms, 
but He2 with four electrons (ψ1

2ψ2
2) is unstable relative to two He atoms. 

E = α 

ψ1 

ψ2 

φ1 φ2 

 

E = !" #
1+ S

 

E = ! + "
1# S

Energy 



LCAO-MO Correlation Diagrams

(Linear Combination of Atomic Orbitals to yield Molecular Orbitals)
• For (Second Row) Homonuclear Diatomic Molecules (X2) - the following 

LCAO-MO’s are generated:
LCAO          MO symbol

1sA  +  1sB   σ1 s
1sA  -  1sB           σ1 s

*

2sA  +  2sB           σ2 s
2sA  -  2sB           σ2 s

*

2px , A  +  2px , B           π2 p
2px , A  -  2px , B           π2 p

*

2py , A  +  2py , B           π2 p
2py , A  -  2py , B           π2 p

*

2pz , A  +  2pz ,B           σ2 p
2pz , A  -  2pz ,B           σ2 p

*

For the above LCAO-MO combinations, the coordinate system is chosen such that the
“z” axis is along the horizontal direction and is considered the internuclear
(“bond”) axis.  Here, the y-axis is considered to be along the vertical direction and the
x-axis is considered to be perpendicular to the plane of the page.  This choice is, of course,
arbitrary.  The correlation diagrams showing the energy ordering and relationship
between the Atomic Orbitals (AO’s) and resultant Molecular Orbitals (MO’s) for
several situations are listed below.  Each MO can maximally contain two (2) electrons
- with opposite spins (↑↓) - as required by the Pauli Exclusion Principle (PEP).  Also,
degenerate MO’s - when occupied - will follow Hund’s Rule in order to achieve a ground
state (energy-preferred) electron configuration.  There are two schemes - I and II below.
Scheme I applies for Li through N (and their ions), inclusive and Scheme II applies for O
through Ne (and their ions), inclusive.  As can be seen, the difference lies in the relative
energy ordering of the π2p MO’s versus the σ2p MO’s.  For Z ≤ 7 atoms, the (degenerate)
π2p MO’s are lower in energy than σ2p  MO.  For Z ≥ 8 atoms, the (degenerate) π2p
MO’s are greater in energy than σ2p  MO.  The reason has to do with energy stabilization
by attenuation of electron-electron repulsion.  In Scheme I, the π2p MO’s are filled before
the σ2p  MO because the electron density in the π2p MO’s are concentrated (between the
atoms) away from (i.e., above and below) the internuclear axis.  This leads to a reduction in
the electron-electron repulsions.  This is particularly important since the electrons in the
already - occupied σ2s  - σ2s

* MO’s will interact less strongly with electrons in the π2p
MO’s than those in the σ2p MO’s (electron density also directed along the internuclear axis).
In Scheme II - followed by atoms toward the end of the second row - the already occupied
σ2s - σ2s

* MO’s are drawn closer (“tighter”) due to the greater nuclear charge (Z).  For
Z ≥ 8, this is enough so that the σ2p MO’s will interact less strongly with the σ2s - σ2s

*

MO’s.  Hence, the σ2p MO will be lower in energy than the π2p MO’s.  [After discussing
Scheme II, your text sometimes follows Scheme I - for simplicity - for all second row
diatomics (and their ions) in some of the homework problems.]  By paying attention to the
PEP and Hund’s Rule - as mentioned above - we fill the MO’s from “bottom - up” in an
“Aufbau” manner for our chosen MO scheme.  This will give us ground state (MO)
electron configurations.



• Homonuclear (Second Row) Diatomic Molecules (X2) - or their ions
Scheme I - X = Li, Be, B, C, N; i.e., Atomic # Z ≤ 7
(Energy increases vertically up the page)

σ2s

σ*2s

π*2p

π2p

π*2p

π2p

σ2p

σ*2p

σ*1s

σ1s

2sB

1sB

2py,B 2px,B2pz,B2pz,A 2py,A

1sA

2sA

2px,A

• Homonuclear (Second Row) Diatomic Molecules (X2) - or their ions
Scheme II - X = O, F, Ne; i.e., Atomic # Z ≥ 8
(Energy increases vertically up the page)
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2sA

1sA

2py,A2pz,A 2pz,B 2px,B2py,B

1sB
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σ1s
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Boundary Surface Diagrams (BSD) for the LCAO-MO’s formed from
2s, 2px , 2py , & 2pz AO’s of second row homonuclear diatomic molecules.

•  2s Atomic Orbital (Bonding & Antibonding) Combinations:

2s Bonding:

+

2sA 2sB+

Bonding Combo +

σ2s

+

2s Antibonding:

2sA 2sB−

Antibonding Combo + −

σ∗2s

+ −



•  2p Atomic Orbital Combinations along BOND AXIS:

2p Bonding (Along Bond Axis):

+ +− −

2pzA 2pzB+

− −+

σ2p

Bonding Combo

2p Antibonding (Along Bond Axis):

+ +− −

2pzA 2pzB−

− − ++

σ∗2p

Antibonding Combo



•  2p Atomic Orbital Combinations PERPENDICULAR TO Bond Axis:

2p Bonding (Perpendicular to Bond Axis):

+ + +

− − −

Bonding Combo

2pyA 2pyB+ π2p

2p Antibonding (Perpendicular to Bond Axis):

+

+−

−

2pyA 2pyB−

Antibonding Combo
+

+−

−

π∗2p

 & SIMILARLY for 2px A & 2px B - Bonding & Antibonding M.O.’s   
(These M.O.’s will be perpendicular to the plane of the paper.)



We have seen that the Schrödinger equation cannot be solved for many elec-
tron systems. The H+

Ĥ(RA, RB, r) = − ~2

2mp

(∇2
A +∇2

B)− ~2

2me

∇2
r −

e2

4piε0

(
1

rA

+
1

rB

− 1

R

)
Under the BO approximation, we have

Ĥel(r;R) = − ~2

2me

∇2
r −

e2

4piε0

(
1

rA

+
1

rB

− 1

R

)
The electronic wavefunction is to be treated as a function of the electronic
coordinate r for fixed internuclear separation R. Thus the Schrödinger equa-
tion is given by

Ĥelψ(r;R) = E(R)ψ)(r;R)

We can imagine solving this for different R. If there is a bond, then this
energy should be minimum for some value of R as shown in the figure. This
gives the equilibrium bond length Re and the dissociation energy De of the

2 molecule ion is a molecule that has only one elec-
tron. However, there are 2 nuclei so it becomes a 3-particle problem. To
solve this problem, we invoke an approximation that is known as the Born-
Oppenheimer approximation wherein we assume that the electronic and nu-
clear degrees of freedom can be solved independently. Further, assuming that
the kinetic energy of the nuclei are very small, we can solve the electronic
problem at fixed internuclear separation as illustrated below.

Molecular Orbital Theory for Hydrogen  
                       Molecule Ion
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molecule. We will briefly describe this physical picture of the bond using
Molecular Orbital theory.

According to MO theory, the electron in a molecule is located in orbitals
(single-electron functions) called molecular orbitals. The molecular orbitals
are different from the atomic orbitals since they are not centered at atomic
nuclei. One way to construct the functions corresponding to molecular or-
bitals is to use linear combination of atomic orbitals (LCA0). For example,
we can consider the linear combination of the 1s wavefunctions centered on
both atoms.

ψMO(~r) = N(ψ1sA(~r)± ψ1sB(~r))

Note that ψ1sA is a function centered at nucleus A. Thus we have

ψ1sA(~r) = N1e
−rA/a0

and similarly for ψ1sB. Assuming that the wavefunctions for ψ1sA and ψ1sB

are normalized, we can calculate the value of N as follows

1 =

∫
ψ∗MO(~r)ψMO(~r)d~r = N2

∫
ψ∗1sA(~r)ψ1sA(~r)d~r + 3moreterms

We can easily show for real orbitals that the terms lead to

1 = N2(2± 2

∫
ψ∗1sA(~r)ψ1sB(~r)d~r)

The last term is denoted by S, so we can write

N =
1√

2(1± S)

where S denotes the overlap between the orbitals.
Of the two orbitals, the one with the positive sign turns out to have lower

energy than the 1s orbital and is called the bonding MO and the one with
negative sign has higher energy than 1s orbital and is called the antibonding
MO.

ψMO−Bonding =
1√

2(1 + S)
(ψ1sA(~r) + ψ1sB(~r))

Thus we can say that for a given R, the two 1s orbitals combine to give one
bonding and one antibonding MO. The bonding MO turns out to have lower
energy, but you could only know this if you could calculate the energies which



A B A B

is difficult. The bonding MO has higher electron density in the internuclear
axis, unlike in the case of the antibonding MO. The 1s bonding orbital is
symmetric to inversion about the center and is referred to as gerade or simply
g for short.

In fact we will write the previous equation in short form as

1σg ∝ (1sA + 1sB)

The convention for naming this orbital is 1σg. The antibonding orbital is
labelled as 1σ∗u.

We could also combine the two 2s orbitals to form a 2σg and 2σ∗u MOs.
With p orbitals things get a little more complicated because the phase of
the orbitals matters. Consider 2pz orbital. This has opposite signs in the
different halves. Now, when combining wavefunctions, we have to see the
sign. For example, the bonding orbital is denoted as 3σu is given by

3σg ∝ 2pzA − 2pzB

where we assume that the Z-axis is along the internuclear axis. The anti-
bonding MO is given by

3σ∗u ∝ 2pzA + 2pzB

The sigma orbitals are spherically symmetric about the internuclear axis. We
can also have orbitals which do not satisfy this condition. For example, if we
take a linear combiation of 2px orbitals located on the two atoms, we will
see that

1πu ∝ 2pxA + 2pxB

and similarly for the 2py orbibtals. These two MOs are degenerate. The
antibonding MO is denoted by

1π∗g ∝ 2pxA − 2pxB



In the Hydrogen molecule ion, there is only one electron. The ground state
corresponds to the electron in the 1σg orbital so this orbital is referred to
as the Highest Occupied Molecular Orbital(HOMO). The lowest unocupied
MO(LUMO) is the 1σ∗u. These MOs were calculated at fixed internuclear
separation. We can qualitatively see what happens when the internuclear
separation is changed and define Re and De as we had before for the 1σg MO.
The antibonding MO does not show a minimum energy at some separation.
This qualitative picture is borne out by numerical calculations.
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