UNIT 1

Coordinate Systems:

(Cartesian Coordinate System)

The most common coordinate system
for representing positions in space is
one based on three perpendicular s
patial axes generally designated x, vy,
and z.

Any point P may be represented by
three signed numbers, usually written
(%, v, z) where the coordinate is the

perpendicular distance from the plane
formed by the other two axes.

Often positions are specified by a position
vector r which can be expressed in terms of
the coordinate values and associated unit

vectors.
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Although the entire coordinate system can be rotated, the relationship
between the axes is fixed in what is called a right-handed coordinate

system.

For the display of some kinds of data,it may be convenient to have
different scales for the different axes, but for the purpose of mathe-
matical operations with the coordinates, it is necessary for the axes to
have the same scales. The term "Cartesian coordinates’ is used to
describe such systems, and the values of the three coordinates
unambiguously locate a point in space. In such a coordinate system you
can calculate the distance between two points and perform operations
like axis rotations without altering this value.

The distance between any two points in rectangular coordinates can be
found from the distance relationship. In case of Cartesian Coordinate

systems it is given as:

The distance between two points P(x,,y,,2,) and P,(x V5.2,)
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is given by

d=\(x,—x ) + (0, =) +(z,— 3,



Polar Coordinates (r — 0)

In polar coordinates, the position of a particle A, is determined by the value of the radial distance to the
origin, r, and the angle that the radial line makes with an arbitrary fixed line, such as the r axis. Thus, the
trajectory of a particle will be determined if we know r and # as a function of ¢, i.e. r(t),#(t). The directions

of increasing r and # are defined by the orthogonal unit vectors e, and eg.
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e,

The position vector of a particle has a magnitude equal to the radial distance, and a direction determined
by e,. Thus,

T =re, . (1)
Since the vectors e, and ey are clearly different from point to point, their variation will have to be considered

when calculating the velocity and acceleration.

Over an infinitesimal interval of time dt, the coordinates of point A will change from (r,#), to (r+dr, 8 + df)

as shown in the diagram.
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We note that the vectors e, and ey do not change when the coordinate r changes. Thus, de, /dr = 0 and
dep /dr = 0. On the other hand, when # changes to # + dfl, the vectors e, and eg are rotated by an angle
dfl. From the diagram, we see that de,. = dfley, and that deg = —dfe,. This is because their magnitudes in

the limit are equal to the unit vector as radius times df in radians. Dividing through by df, we have,

de, d deg
{]!E = Eg. all ﬁ = —Er .
Multiplying these expressions by dfl /dt = fl, we obtain,
de,. dff de,. . deg )
— = =4f nd — = —fe, . 2
a6 dt  de o0 MY Ty r 2)
Note Alternative calculation of the unit vector derivatives

An alternative, more mathematical, approach to obtaining the derivatives of the unit vectors is to express

e, and eg in terms of their cartesian components along ¢ and j. We have that

e, = costi+ sinfly

eg = —sinfi+cosfy .

Therefore, when we differentiate we obtain,

de, de, o N
dr =0, 1 —sinfi +cos 3 = eg
%:U, % = —cosfli—sinflj = —e, .

Velocity vector
We can now derive expression (1) with respect to time and write
vt=r=re.+re,,
or, using expression (2], we have
v=re.+ T‘El]-E“g ; (3

"Here, v, = # is the radial ve locity component, and vy = rfl is the cireumferential velocity component. WeH
also have that v = /v2 + v3. The radial component is the rate at which r changes magnitude, or stretches,

and the cirenmferential component, is the rate at which » changes direction, or swings.



Acceleration vector
Differentiating again with respect to time, we obtain the acceleration
a=1uv= Fer+3'"ép—|—?'"9£9—|—rt§ee—|—rfjég
Using the expressions (2), we obtain,
a=(F—rf?) e+ (rf +2/f) eq . (4)

where a, = (# — rf2) is the radial acceleration component, and ag = (rfl + 278) is the circumferential

acceleration component. Also, we have that a = /a2 + a2.

Change of basis

In many practical situations, it will be necessary to transform the vectors expressed in polar coordinates to

cartesian coordinates and vice versa.

@ . o = , . , =
Since we are dealing with free vectors, we can translate the polar reference frame for a given point (r,#), to

the origin, and apply a standard change of basis procedure. This will give, for a generic vector A,

A, cosf sin# A A, cosfl —sinf A
and —
Ag —sin# cos# A, Ay ginéd  cosf Ay
Example Circular motion

Consider as an illustration, the motion of a particle in a circular trajectory having angular velocity w = 4,

and angular acceleration a = w.
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In polar coordinates, the equation of the trajectory is
L o
r = R = constant, 9:wt+§at .
The velocity components are
v, =1=10, and UE;-:rE-f‘:R(w+rxt]:n .
and the acceleration components are,
2

ar:F—rEiQ:—R(w+mt)2:—%, and ap=rf+2f=Ra=aq, ,

where we clearly see that, a, = —a,,. and that ay = a;.

In cartesian coordinates, we have for the trajectory,
1, , 1,
r = Rcos(wt + Eo:t ),y = Rsin{wt + iﬂt ).
For the velocity,
, 1, 1,
v, = —R(w + o) sin(wt + Eﬂt )y vy = Rlw + at) cos(wt + iﬂt ),
and, for the acceleration,
2 L o : L 2. L L o
a, = —Rw+at) cm-;[wt+§at )= Rasin(wt+ iat ), ay = —Rlwtat) 51n[wt+§at )+ R cos(wt+ imt ).

We observe that, for this problem, the result is much simpler when expressed in polar (or intrinsic) coordi-

nates.

Example Motion on a straight line

Here we consider the problem of a particle mowving with constant velocity g, along a horizontal line 4 = un.

u
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o
Agsuming that at ¢ = 0 the particle is at * = [, the trajectory and velocity components in cartesian
coordinates are simply,
r = wyt W=

ty = 1 wy, =}

iy =) ag =} .



In polar coordinates, we have,

. 1
r= /et 4o ff = tan 1(;%)

U =T =1y cos va =1 = —vysinf
a0 =7 — 18> = ag=rl+2r=10 .

Here, we see that the expressions obtained in cartesian coordinates are simpler than those obtained using
polar coordinates. It is also reassuring that the acceleration in both the r and # direction, calculated from
the general two-term expression in polar coordinates, works out to be zero as it must for constant velocity-

straight line motion.

Example Spiral motion (Kelppner/Kolenkow)

A particle moves with § = w = constant and r = rye”, where ry and 3 are constants.

We shall show that for certain values of 3, the particle moves with a, = 0.
a = (F—rfe, + (rfl +2rf)ey
= (B%ree” — rpe”w?e, + 28rqwe’ley

If 3 = +w, the radial part of @ vanishes. [t seems quite surprising that when r = rpe”, the particle moves
with zero radial acceleration. The error is in thinking that # makes the only contribution to a,; the term

—rf? is also part of the radial acceleration, and cannot be neglected.




Equations of Motion

In two dimensional polar r# coordinates, the force and acceleration vectors are F = Fl.e, + Fyey and

a = a,€, + ageg. Thus, in component form, we have,

F. = ma=m(F— TE:'QJ

Fa = mr;t,g:m(rfﬁ—l—?:-"ﬁj].

Cylindrical Coordinates (r — ¢ — z)

Polar coordinates can be extended to three dimensions in a very straightforward manner. We simply add
the z coordinate, which is then treated in a cartesian like manner. Every point in space is determined by

the r and @ coordinates of its projection in the ry plane, and its z coordinate.
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The unit vectors e,, eg and k, expressed in cartesian coordinates, are,

e, = costi+sintj
eg = —sin#i+ cosbly
and their derivatives,
é,. = fey, é5=—fe,, k=0.

The kinematic vectors can now be expressed relative to the unit vectors e,, es and k. Thus, the position

vector is

r=re-+zk,

and the velocity,

v=re,+rbes+ ik,

where v, = 7, vg =18, v. = 3, and v = vZ +v; +v2. Finally, the acceleration becomes
a=(F—rf) e+ (rd + 2r8) eq + 3k ,

where @, = — 102, ag =rf + 278, a, = #, and a = /a2 + a3 + aZ.



Note that when using cylindrical coordinates, v is not the modulus of v. This is somewhat confusing, but it
is conststent with the notation used by most books. Whenever we use cylindrical coordinates, we will write

|v| explicitly, to indicate the modulus of v, i.e. |v| = Vr?2 + 22.

Equations of Motion

In cylindrical r#z coordinates, the force and acceleration vectors are ¥ = FlLe,. + Fyey + F.e. and a =

arer + ages + a-e.. Thus, in component form we have,

F. = ma, =m(¥ — T‘EQQJ
Fy = mag=m(rfl +276)
F. = ma.=mz2.

Spherical Coordinates (r — 0 — ¢)

In spherical coordinates, we utilize two angles and a distance to specify the position of a particle, as in the

case of radar measurements, for example. =




and for the kinematic vectors

r = re,
v = Te.+rlcosgey+roe,
a = (F—rb#cos”op—ra)e,

+ (2B cosd+rfcosd — 2rfdsing) eg

+ (21"(-5 + rq-t:zg sin ¢ cos ¢ + rz;-'?ﬂ] €s .

. Equations of Motion

* Finally, in spherical rfl¢ coordinates, we write F' = Fle, + Fyeg + Fe; and a = a,e, + ageg +a e, Thus,

E. = ma,=m(i—rf*cos’ ¢ — ro?)
Fo = mag=m (2#‘9 Cos ) + ré‘tr{}sqﬁ — 2!‘9&5 sin )
Fy = mag=m(2r¢+rd?singeosd +ro).

Inertial and Non-Inertial Reference Frame:

A frame of reference in which Newton's laws hold is called an inertial frame of
reference. Any frame which is at rest or is moving with constant velocity with
respect to inertial frame is also an inertial frame of reference.

Frame of reference in which Newton's law dose not hold is called non-inertial
frame of reference. An accelerated frame of reference is an example of non-

inertial frame of reference.

Rotating Frames:
In this section we will discuss what Newton’s equations of motion look like in
non-inertial frames. Just as there are many ways that an animal can not be a
dog, so there are many ways in which a reference frame can be non-inertial.

Here we will just consider one type: reference frames that rotate



Let’s start with the inertial frame S drawn in the figure
with coordinate axes x, y and z. Our goal is to understand
the motion of particles as seen in a non-inertial frame 5’ < )
with axes 2, ¥’ and 2', which is rotating with respect to §. — y
We'll denote the angle between the x-axis of S and the z'- Y

axis of S" as f. Since S’ is rotating, we clearly have 8 = 0(t) — =X
and 6 % 0. =1 0

"y

Our first task is to find a way to describe the rotation of
: : Figure 31:
the axes. For this, we can use the angular velocity vector w

that we introduced in the last section to describe the motion of particles. Consider a
particle that is sitting stationary in the S’ frame. Then, from the perspective of frame
S it will appear to be moving with velocity

r=wixr

where, in the present case, w = fz. Recall that in general, |w| = d is the angular speed,
while the direction of w is the axis of rotation, defined in a right-handed sense.

We can extend this description of the rotation of the axes of S* themselves. Let e},
i = 1,2, 3 be the unit vectors that point along the z’, v and 2’ directions of S’. Then
these also rotate with velocity

Velocity and Acceleration in a Rotating Frame

Consider now a particle which is no longer stuck in the S’ frame, but moves on some

trajectory. We can measure the position of the particle in the inertial frame S, where,
using the summation convention, we write

I =re;

Here the unit vectors e;, with ¢ = 1,2, 3 point along the axes of S. Alternatively, we
can measure the position of the particle in frame S, where the position is

N
r=r;e;

Note that the position vector r is the same in both of these expressions: but the
coordinates r; and 7} differ because they are measured with respect to different axes.
Now, we can compute an expression for the velocity of the particle. In frame S, it is
simply



i‘ = ?.‘algE‘é (6.1)

because the axes e; do not change with time. However, in the rotating frame 5’ the
velocity of the particle is
r=rle +re
= f‘;e; + r;w X e;

L
=re +wxr

dr_dr_i_x
dt ) \dt)g, <77

o - (6.3)

(6.2)

We'll introduce a slightly novel notation to help highlight the physics hiding in these
two equations. We write the velocity of the particle as seen by an observer in frame S

dr _
- | — i€
dt )

Similarly, the velocity as seen by an observer in frame S’ is just

dr\
dt o i-1

From equations (6.1) and (6.2), we see that the two observers measure different veloc-
ities,

as

What about acceleration? We can play the same game. In frame S, we have
r = ﬁgei

while in frame S, the expression is a little more complicated. Differentiating (6.2) once
more, we have

- o rfe f ! fo ! ! L

=fe +2rwxe +wxr+rwx(wxe;')



As with velocities, the acceleration seen by the observer in S is 7;e; while the accel-
eration seen by the observer in 5" is r’e/. Equating the two equations above gives

us
dry _ (dx + 2w x dr +wXxr4+wx(wxr)
dtﬂ g B dfﬂ sl ~ df 5

This equation contains the key to understanding the motion of particles in a rotating
frame.

(6.40

Newton’s Equation of Motion in a Rotating Frame

With the hard work behind us, let’s see how a person sitting in the rotating frame S’
would see Newton's law of motion. We know that in the inertial frame S, we have

J2
m (—g) =F
dt? / ¢
So, using (6.4), in frame S, we have

d*r dr :
m (E) o F — 2mw x (E)gf — MW X T —mw X (W XxT) (6.5)

In other words, to explain the motion of a particle an observer in S’ must invoke the
existence of three further terms on the right-hand side of Newton's equation. These are
called fictitious forces. Viewed from ', a free particle doesn't travel in a straight line
and these fictitious forces are necessary to explain this departure from uniform motion.
In the rest of this section, we will see several examples of this.

The —2mw x 1 term in (6.5) is the Coriolis force; the —mw x (w X r) term is called
the centrifugal force; the —mw x r term is called the Euler force.



The most familiar non-inertial frame is
the room vou are sitting in. It rotates once per
day around the north-south axis of the Earth.
It further rotates once a year about the Sun
which, in turn, rotates about the centre of the
galaxy. From these time scales, we can easily
compute w = |wl|.

The radius of the Earth 1s Rp,4p, =~ 6 x
10 km. The Earth rotates with angular fre-
quency

2

e e 0 E !
1 day 2 ?
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The distance from the Earth to the Sun is a, =~
2 % 10® km. The angular frequency of the orbit
is

27
1 vear

p@ w100 g0
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It should come as no surprise to learn that

':‘-"'rot/worh — Torh)/]_;'ot ~ 365.

In what follows, we will see the effect of the centrifugal and Coriolis forces on our
daily lives. We will not discuss the Euler force, which arises only when the speed of
the rotation changes with time. Although this playvs a role in various funfair rides, it's
not important in the frame of the Earth. (The angular velocity of the Earth’s rotation
does, in fact, have a small, but non-vanishing, w due to the precession and nutation of
the Earth's rotational axis. However, it is tiny, with & < w? and, as far as I know, the

resulting Euler force has no consequence).
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YOU MEAN CENTRIPETAL FORCE-
THERE'S NO SUCK THING AS
CENTRIFUGAL FORCE.

A LAUGHABLE CLAW\, MISTER BOND, PERPETUATED
BY OVERZEALUS oF

NG MISTER BOND.
| EXPECT YoU TO DIE.
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Inertial vs Gravitational Mass Revisited

Notice that all the fictitious forces are proportional to the inertial mass m. There is
no myvstery here: it's because they all originated from the “ma” side of “F=ma" rather
than “F” side. But, as we mentioned in Section 2, experimentally the gravitational
force also appears to be proportional to the inertial mass. Is this evidence that gravity
too is a fictitious force? In fact it is. Einstein's theorv of general relativity recasts
gravity as the fictitious force that we experience due to the curvature of space and
time.

The centrifugal force is given by oY

Feent = —w x (w X 1)

= —m(w-r)w +mw’r

We can get a feel for this by looking at the figure.
The vector w x r points into the page, which means

that —w x (w x r) points away from the axis of
rotation as shown. The magnitude of the force is Figure 33:

IFeent| = mw?r cosf = mw?d (6.6)
where d is the distance to the axis of rotation as shown in the figure.

The centrifugal force does not depend on the velocity of the particle. In fact, it is an
example of a conservative force. We can see this by writing

Foe = -VV  with V= —%(m x 1)’ (6.7)

In a rotating frame, V" has the interpretation of the potential energy associated to a
particle. The potential V' is negative, which tells us that particles want to fly out from

the axis of rotation to lower their energy by increasing |r|.



Suspend a piece of string from the ceiling. You might
expect that the string points down to the centre of the
Earth. But the effect of the centrifugal force due to
the Earth’s rotation means that this isn't the case. A
somewhat exaggerated picture of this is shown in the
ficure. The question that we would like to answer is:
what 1s the angle ¢ that the string makes with the line
pointing to the Earth’s centre? As we will now show,
the angle ¢ depends on the latitude, 8, at which we're

sitting.

The effective acceleration, due to the combination of gravity and the centrifugal fore

is
g =8 — W X (WXr)

It 1s useful to resolve this acceleration in the radial and southerly 5
directions by using the unit vectors r and 6. The centrifugal force F Kﬂ
1s resolved as

—

F = |F|cosft — |F|sinf 6

= mw?r cos? 0 F — mw’rcosfsinf @
where, in the second line, we have used the magnitude of the cen-
Jirifugal force computed in (6.6). Notice that, at the pole § = 7/2
and the centrifugal forces vanishes as expected. This gives the effective acceleration
g = —gF —w X (W X r) = (=g + w?R cos® B)F — w?Rcosfsin e

where R is the radius of the Earth.

The force mg.g must be balanced by the tension T in the string. This too can be

resolved as



T=Tcosdt+ T sin )

[n equilibrium, we need mg. +T = (), which allows us to eliminate T to get an equation
relating ¢ to the latitude 6,

: w?Rcosfsin @
ano = - —
I g = w?Rcos?

This is the answer we wanted. Let's see at what latitude the angle ¢ is largest. If
we compute d(tan@)/df, we find a fairly complicated expression. However, if we take
int account the fact that w?R ~ 3 x 1072 ms=? < ¢ then we can neglect the term in
which we differentiate the denominator. We learn that the maximum departure from
the vertical occurs more or less when d(cosfsinfl)/df = 0. Or, in other words, at a
latitude of # ~ 45°. However, even at this point the deflection from the vertical is tiny:
an order of magnitude gives ¢ ~ 10~

When we sit at the equator, with # = 0, then ¢ = 0 and the string hangs directly
towards the centre of the Earth. However, gravity is somewhat weaker due to the
centrifugal force. We have

— . g2
gﬁﬁ|equa.tor —§—w R

Based on this, we expect g — g &~ 3 x 1072 ms~? at the equator. In fact, the experi-
mental result is more like 5 x 1072 ms=2. The reason for this discrepancy can also be
traced to the centrifugal force which means that the Earth is not spherical, but rather
bulges near the equator.

A Rotating Bucket

Fill a bucket with water and spin it. The surface of the water o
will form a concave shape like that shown in the figure. What T

. r
is the shape? R

We assume that the water spins with the bucket. The poten-
tial energyv of a water molecule then has two contributions: one
from gravity and the other due to the centrifugal force given

in (6.7)

Lr 1 2.2

water = Mgz — Emw T



Now we use a somewhat slick physics argument. Consider a

water molecule on the surface of the fluid. If it could lower its energy by moving along
the surface, then it would. But we're looking for the equilibrium shape of the surface,
which means that each point on the surface must have equal potential energy. This
means that the shape of the surface is a parabola, governed by the equation

2.2
w-r
7z = —— + constant
29
Coriolis Force
The Coriolis force is given by
F..,= —2mwxv

where, from (6.5), we see that v = (dr/dt)s, is the velocity of the particle measured
in the rotating frame S’. The force is velocity dependent: it is only felt by moving
particles. Moreover, it is independent on the position.

Particles, Baths and Hurricanes

The mathematical form of the Coriolis force is identical to the
Lorentz force describing a particle moving in a magnetic
field. This means we already know what the effect of the e {3 -
Coriolis force will be: it makes moving particles turn in circles. A?
We can easily check that this is indeed the case. Consider =

a particle moving on a spinning plane as shown in the figure,
where w 1s coming out of the page. In the diagram we have



drawn various particle velocities, together with the Coriolis force experienced by the
particle. We see that the effect of the Coriolis force is that a free particle travelling on

the plane will move in a clockwise direction.

There is a similar force — at least in principle — when vou pull the plug from vour
bathroom sink. But here there’s a subtle difference which actually reverses the direction

of motion!

Consider a fluid in which there is a region of low pressure. This region could be
formed in a sink because we pulled the plug, or it could be formed in the atmosphere
due to random weather fluctuations. Now the particles in the fluid will move radially
towards the low pressure region. As they move, they will be deflected by the Coriolis
force as shown in the figure. The direction of the deflection is the same as that of a
particle moving in the plane. But the net effect is that the swirling fluid moves in an
anti-clockwise direction.

.J.F] Vo '~
| O\

The Coriolis force is responsible for the formation of hurricanes. These rotate in
an anti-clockwise direction in the Northern hemisphere and a clockwise direction in



Cyclone Catarina which hit Hurricane Katrina, which hit
Brazil in 2004 New Orleans in 2005

al o .-

the Southern hemisphere. However, don't spend too long staring at the rotation in
vour bath water. Although the effect can be reproduced in laboratory settings, in vour
bathroom the Coriolis force is too small: it is no more likely to make vour bath water
change direction than it is to make your CD change direction. (An aside: If yvou've not
come across a CD before, you should think of them as an old fashioned ipod. There
are a couple of museums in town — Fopp and HMV — which display examples of CD
cases for people to look at).

Our discussion above supposed that objects were moving on a plane which is perpen-
dicular to the angular velocity w. But that’s not true for hurricanes: they move along
the surface of the Earth, which means that their velocity has a component parallel to
w. In this case, the effective magnitude of the Coriolis force gets a geometric factor,

Feor| = 2mwuvsind (6.8)

It's simplest to see the sinf factor in the case of a particle travelling North. Here the
Coriolis force acts in an Easterly direction and a little bit of trigonometry shows that
the force has magnitude 2mwwv sin @ as claimed. This is particularly clear at the equator
where ¢ = (. Here a particle travelling North has v parallel to w and so the Coriolis
force vanishes.



It’s a little more tricky to see the sinf factor for a particle travelling in the Easterly
direction. In this case, v is perpendicular to w, so the magnitude of the force is actually
2mwv, with no trigonometric factor. However, the direction of the force no longer lies
parallel to the Earth's surface: it has a component which points directly upwards. But
we'Te not interested in this component; it's certainly not going to be big enough to
compete with gravity. Projecting onto the component that lies parallel to the Earth’s
surface (in a Southerly direction in this case), we again get a sin § factor.

Conservation Laws for Systems of Particles

It is important to note that the center of mass is a property of the system and does not depend on the
reference frame used. In particular. if we change the location of the oriein O. r; will change, but the
absolute position of the point & within the system will not. Often, it will be convenient to describe the
motion of particle i as the motion of G plus the motion of i relative to G. To this end. we introduce the
relative position vector, 7!, and write,

ri=rg+r;. 2)

It follows immediately. from the definition of the center of mass (1) and the definition of the relative vector

r! (2). that,

1t

imi‘i"; = i m;(7r; — ‘l‘c;) = Z m;t; —mrg =0, (3)
=1 i=1

1=1

This result will simplify our later analysis,



Forces

In order to derive conservation laws for our system. we isolate it a little more carefully. identify what mass

particles it contains and what forces act upon the individual particles.
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We will consider two types of forces acting on the particles :

p— - — s oW . .a a. . - aa .a . A

Conservation of Linear Momentum

The linear momentum of the system is defined as.
L=) muv;. (4)
1i=1

From equation (2). we have that v; = 7; = 5 + 7., which. combined with the above equation. gives.

L Tt

L= Z m;(fg +7) = Z m;Vg + ;[Zm,-'i";} = muvg . (5)

i=1 i=1 i=1
since by the definition of center of mass ., m;7; = 0. We now consider the time variation of the linear

momentum. If we assume that the reference frame xyz is inertial, then, starting from equation (4). we have.

T

inrn,-ﬂ,-zZ[F,--l- i _f,-j]l=iF,-=F. (6)
i=1 =1

i=1 3=1 374
where F is the sum of all external forces acting on the system. Since the sum of the internal forces balance
when summed over 4 and j, we are left with only the summation over the external forces. Thus, for a system

of particles, we have that,

L=F. (7)



Note that. from equation (5). we can also write L = mag. Thisisa powerful result. Note that the center

of mass is in general not fixed to a particular particle but is a point in space about which the individual

particles move,

These ideas also describe the conservation of linear momentum under external and internal collisions. Since
individual internal collisions between particles in the system conserve momentum. the sum of their interac-
tions also conserves momentum. If we consider an external particle imparting momentum to the system, it
could be treated as an external impulse. Conversely we can consider the particle about to collide to be a

part of the system. and include its momentum as part of total svstem momentum, which is then conserved

by Newton's law.

Conservation of Angular Momentum

Since the angular momentum is defined with respect to a point in space. we will consider two cases, using
a different reference point for each case: 1) conservation of angular momentum about a fixed (or more

Conservation of Angular Momentum about a Fixed Point O

system 2’

@ =nota“real"
particle, a position
in space

The angular momentum of a system of particles about a fixed point, O, is the sum of the angular momentum

of the individual particles,

T

Hy = Z(T‘,- ' m.,-v,-jl : [E:l

=1



The time variation of Hy can be written as.

T

Ho = Z(r’,- X miv; ) + i[r,- X m;v; []-I-Z rix (F;+ Z fi;)) = J_Ztl r; x Fi)+ 2.-1-1’,- . (9)

1=1 1=1 i=1, j#i
where we replace mv; by the sum of the forces acting on particle i: mv, = (F, + ZJ-:L i _f,-j). YoM,
is the sum of any external moments that act on the system. The term (7; x m;v;) in equation (9) is zero;
since ¥; = v;. the two vector are parallel and their cross-product is zero. In the second term we may write
rix fii 47 x fi = (r;—7;) x f.; =0 since the forces are aligned with (r;-r;). and their values are equal
and opposite, their cross product with (r;-r;) is zero, and therefore, the internal forces have no net effect
on the total angular momentum change of the particle system. Therefore

T Tt

Hp = Z(r,- X m;l;) = Z[r,- x F;) -I-i.-’i-'f,- . (10)

i=1 i=1 i=1
When evaluating the moments which act to change the angular momentum from equation (13), we see that
the sum of the internal moments is zero so that the only moment which acts to change the angular momentum
1s the moments created by the external forces about the point O plus any external moments applied to the
system.

Thus, we have that

Ho=Mo. (1)

where Mo = Y (ri x Fi) + Y.1_, M; is the total moment, about O, due to the applied external forces

plus any external moments,



Conservation of Angular Momentum about

The angular momentum about the center of mass &' is given by,

L1

Hs = Z[r; X miv; ) . (12)

i=1

Taking the time derivative of equation (2), we obtain
V=T =T+ =vg+ vl (13)

Inserting this expression into equation 12, we obtain

T TE

Hg =) (rixmlig+it)) =) (rixmig) + Z rixml) =y (rf o m)) (14)
=1 i=1

i=1 i=1

since Y (r x miFg) = —Fg x S m;rt = 0 (see equation 3). We note that equations (12) and (14)
give us alternative representations for H. Equation (12) is called the absolute angular momentum (since
it involves absolute velocities. v, ). whereas equation (14) is called the relative angular momentum (since it
imvolves velocities, v!, relative to ). When G is chosen to be the origin for the relative velocities, both
the absolute and relative angular momentum are identical. In general. the absolute and relative angular

momentum with respect to an arbitrary point are not the same.

We can now go back to equation (12) and consider the time variation of Hg.

H.r;; = Z(‘i‘ xm,('vc'-l-‘i‘ -|-Z‘i‘ ><m, []-I-Z?‘ KF -|-Z’U". [15)

1=1 1=1
In the above equation, the term 7} x m;F; is clearly zero, and Y (7} x mvg) = —vg x Yoy mi¥; =
—vg xd(Y . m;rt)/dt = 0. Thus, we have that

Hg=) (rixmv')=Mg. (16)

i=1



Here, Mg =S (rl x F;)+ 1., M,, is the total moment, about G, of the applied external forces plus
any external moments. Note that external forces n general produce unequal moments about O and G while
applied external moments (torques) produce the same moment about © and G.

The above expression is verv powerful and allows us to solve. with great simplicity, a large class of problems
in rigid body dynamies. Its power lies in the fact that it is applicable in verv peneral situations: In the
derivation of equation (16). we have made no assumptions about the motion of the center of mass, G. That
is. equation (16) is valid even when G is accelerated. We have implicitly assumed that the reference frame
used to describe r! in equation 13 is non-rotating with respect to the fixed frame ry= (otherwise, we would
have written 7; = v! +w’ x r!, with ', the angular velocity of the frame considered). It is not difficult to
show that equation (16) is still valid if the reference frame rotates, provided the angular velocity is constant.
If the reference frame rotates with a constant angular velocity, the angular momentum will differ from that

of equations (12) and (14) by a constant, but equation 16 still will be valid.

Finally. by combining equations 30 and 12, the angular momentum about a fixed point. O, can be expressed

as a function of the angular momentum about the center of mass, as.
Ho=rs xmvs+ Hg. [].T}

Just as we could incorporate collisions in our statement of conservation of linear momentum. we can n-
corporate collision in our statement of conservation of angular momentum. Collisions conserve both linear
and angular momentum. Just as changes in linear momentum result for linear impulses, changes in angular

momentium result from angular impulses.

Rocket



A rocket 15 a vehicle that propels itself through space by ejecting a propellant gas at
high speed 1n a direction opposite the desired direction of motion. The German V-2
rocket was an early example, as were the United States rockets such as Juno, Redstone,
Agena, and Saturn. The largest and most powerful rocket ever used 1s the United States
Saturn ¥V Moon rocket, which took the Apollo astronauts to the Moon in the 1960s and
1970s.

In order to place a spacecraft into low-Earth orbit, a rocket must accelerate its
payload from rest to a speed of about 17,000 miles per hour. In order to reach this
speed, most of the rocket’s mass must be fuel. The amount of fuel required for a given
mass of payload i1s governed by the rmocket equation, which will be derived here.

Some critics of early space exploration claimed that rockets would not be able
to travel in space because “they would have nothing to push against.” As we'll see
here, such arguments are silly—one needs only to make use of the conservation of
momentum to show that rockets can work in space.

Derivation of the Equation

Let’s now derive the rocket equation. Given a rocket of mass m, we will wish to find
an equation that tells us how much fuel (propellant) 1s required to change the rocket’s
speed by an amount Av. The complication here is that the rocket loses mass as it expels
propellant, so we need to allow for that.

Suppose that at an initial time ¢ = (), a rocket has velocity v and total mass m,

including propellant mass. The total momentum of the rocket and propellant at time
t = (1 1g therefare ma
expulsion of propellant will cause the rocket to then have mass m + dm and velocity .

v + dv. The total momentum of the system at ¢ = dt is then the sum of the rocket
and propellant momenta, (m + dm)(v + dv) + (v — v,)(—dm). By conservation of ,
momentum, the momentum of the system at time ¢+ = () must equal the momentum at ,
time t = dt: :

5

mv = (m+dm)(v+dv)+(v—v,)(—dm) (1
= mv+vdm+mdv+dmdv—vdm+ v, dn (2)
(3)

Now the two muv terms cancel, the two o dm terms cancel, and the term dm dv 1s a
second-order differential, which can also be cancelled. We're then left with

0 = mdv+uv,dm (4)
T I!'Ei-' = —E.‘p EE]".I‘?. {.5}
dv = —up dm (6)

I



Now let the rocket burn all its propellant. The rocket’s velocity will change by a total
amount Awv and its mass will change from m to its empty mass m . Integrating Eq. (6)
over the entire propellant burn, we find

v+Au Wl
& I'.-E ]
/ dv = —i-‘p/ an (7)
v Tl m

Or, evaluating the integrals,

Av = —v,ln —= (8)
s
or
Av =wv,In I (9)
M

Eq. (9) is called the rocket equation. It relates the fueled and empty masses of the
rocket and the velocity of the propellant to the total change in velocity of the rocket.

Example

Let’s take as an example the launch of a rocket from the Earth’s surface to low-Earth
orbit. In this case, the rocket’s velocity will need to change by an amount Av =
17,000 mph, or about 7600 m/s. Let’s say we have a rocket that can expel propellant
with a speed v, = 4000 m/s. Then by Eq. (11),

.

1—Ze =1 — e=Bv/v =085, (12)

I

so 85% of the rocket’s initial mass must be propellant.

Staging

In practice, it is found that it can be more efficient to launch rockets in stages, where
part of the rocket structure drops away when it 1s no longer needed, thus decreasing the
amount of mass that needs to be placed in orbit. For example, the Saturn V rocket had
three stages. The large lower first stage contained a large fuel tank and large engines.
When all the fuel contained in that stage had been spent, the entire first stage separated
and dropped away, and a smaller second stage was ignited. When all the second-
stage fuel was spent, it too separated and and dropped away, and the third stage engine
ignited, which placed the spacecraft into Earth orbit. This staged approach requires
much less fuel than launching the entire Saturn V rocket into orbit.



Reference Frames

To describe a physical event, we need to establish a 3-dimensional coordinate system associated with
measurement,

Let’s consider two reference frames. One, called S, is shown at left. The other, called S’, is shown at right.
Let’s imagine a meatball which is moving with velocity ‘v* within reference frame S. Reference frame S’ may
be moving with respect to frame S, so the perceived velocity of the meatball in §” may be different than an
observer in S would measure. In fact, v’ could be zero. So the value of the y’ coordinate may also differ in the
two reference frames. However, as drawn, the x (x’) and z (z’) coordinates would be the same in the two
reference frames.

X ’
velocity: v ’
S -y O Frames of
= ; Reference y
.
z _—
z

Inertial Reference Frames

Inertia: An object moves at constant velocity unless acted upon by an external force.

Given the concept of inertia, we find it useful to talk about 'inertial reference frames' which are three-
dimensional coordinate systems which travel at constant velocity. In such a frame, an object is observed to
have no acceleration when no forces are acting on it. If areference frame moves with constant velocity relative
to an ertial reference frame, it also 1s an inertial reference frame. There is no absolute inertial reference frame,
meaning that there is no state of velocity which is special in the universe. All inertial reference frames are
equivalent. One can only detect the relative motion of one inertial reference frame to another.

Principle of Galilean Relativity

"Laws of mechanics must be same 1n all inertial frames of reference”



Galilean Transformations

Consider a meatball in frame S moving with velocity, v, within that frame, and S' 1s moving with velocity V'
relative to frame S. This is shown in the following Figure.

y ’ v
velocity: v — Velocity: v’
S ~ O Frames of §’
- Ref: ,
) eference )
' /
z .
z

We want to know how to determine the coordinates in S” when we know them in frame S. In the picture above,
in the S frame the meatball is moving and the {x,y,z} axes are fixed. When we transform to the S’ coordinate

system (so that {x’,y’,z’} are at rest), it now looks like the meatball has velocity v’ & that the old axes {x.y,z}
are moving with velocity v in the NEGATIVE x’ direction. "v" then appears as the relative velocity of the

PRIMED coordinate system {x’,y’,z’}, §°, compared to the UNPRIMED coordinate system {x,y,z} or S.

To determine the coordinates of the meatball in one frame. S°, when we know 1t's coordinates in another frame,
S, we employ the Galilean space and time transformations.

Galilean space-time transformations:

If S has a velocity relative to S so that v’ =0, then we have

X' = x+tvt
y=y
7=z

t'=t

(Note: remember, v or v’ are vectors, so they have a sign.)
The time interval between any two events is the same 1n any frame of reference.
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UNIT II

Inverse Force fields

Inverse-square law is a physical law implying that a specified physical
quantity or intensity shows inverse proportionality to the square of the
distance from the source of that physical quantity. The fundamental
cause for this can be understood as geometric dilution corresponding to
point-source radiation into three-dimensional space. This comes from
strictly geometrical considerations. The intensity of the influence at any
given radius r is the source strength divided by the area of the sphere.
Being strictly geometric in its origin, the inverse square law applies to
diverse phenomena. Point sources of gravitational force, electric field,
light, sound or radiation obey the inverse square law. It is a subject of
continuing debate with a source such as a skunk on top of a flag pole;
will it's smell drop off according to the inverse square law?

Mathematically formulated:

Intensity o

distance?

It can further be extended as

Intensity, distance,?

Intensity, distance; 2

Or,

Intensity, * distance,® = Intensity, * distance,

The divergence of a field(vector field) which is the resultant of radial
inverse-square law fields with respect to definite sources is everywhere
proportional to the strength of the local sources, and hence zero outside



sources. Newtons gravitational law follows an inverse-square law, like the

effects of electric, light, magnetic, sound, and radiation phenomena.

Equation of Orbit
the motion of the particle must occur in a plane, which we take as the
xy plane, and the center of force is taken as the origin. In Fig. we show

the xy plane, as well as the polar coordinate system in the plane.

r -~
-~
. -~
| e
-~
o~
-~
~1 8
= | [
.

)] i
4—rcos ) —»

Fig(1):Polar coordinate system of a particle moving in the xy plane.
Since the vectorial nature of the central force is expressed in terms of a
radial vector from the origin it is most natural (though not required!) to
write the equations of motion in polar coordinates. In earlier lectures

we derived the expression for the acceleration of a particle in polar

coordinates

a = (F—rf%r +(rf +216)0,. (1)

Then, using Newton’s second law, and the mathematical form f

or the central force given as,



we have:

m(r — r'ﬁijfjrl + m[r'l‘é’r—l— Er"l":!.‘,lﬂl = f(r)ry. (3)

m(F—r6%) = f(r), (4)
}F?Iij'l'lr?;'l'?}"ﬁ}j] — (5)

These are the basic equations of motion for a particle in a central force
field. From these we get,

r20 = h = constant. (6)

This constant of the motion will allow you to determine the ©
component of motion, provided you know the r component of motion.
However, (4) and (5) are coupled (nonlinear) equations for the r and

0 components of the motion. How could you solve them without solving
for both the r and © components? This is where alternative forms of the
equations of motion are useful. Let us rewrite (8) in the following form
(by dividing through by the mass m):

Let us rewrite (4) in the following form (by dividing through

by the mass m):

jl"' — j'l'r?lij = f[jl] (7)

T

Now, using (6), (7) can be written entirely in terms of r:
r: f(r) (8)

rd ™

We can use (8) to solve for r(t), and the use (6) to solve for 8(t).
Equation (8) is a nonlinear equation. There is a useful change of
variables, which for certain important central forces, turns the equation



into a linear differential equation with constant coefficients, and these
can always be solved analytically. Here we describe this coordinate
transformation.

Let

This is part of the coordinate transformation. We will also use
O as a new “time” variable. Coordinate transformation are effected by
the chain rule, since this allows us to express derivatives of “old”

coordinates in terms of the “new” coordinates. We have:

dr dr df hodr h dr du il
T = fd fd fd = — .
dt dfl dt r2df 2 dudf dtl (9)
And
r= ﬂ = f—g —hdj = f—!T —I?“Ti ﬁ = —hguzii:. <10)
fdt fdt dtl dtl dd | dt d 2

where, in both expressions, we have used the relation
r’®=h at strategic points.
Now

2

r'ﬁig =j-'hl—; = h2ud. (11)

T

Substituting this relation, along with (10) into (4), gives

P SR
m( h*u 157 h u)—f(“ :

2 x
d=u : T __f (”)
b2 mh2u? (12)

or

l

f(r)



Now if

where K is some constant (12)becomes a linear, constant coefficient
equation
Exact solution for the orbit equation for an inverse square law
force
Consider now the orbit equation for u(0) for the attractive inverse
square law force, F,(r)=—k/r’, namely

ek
(B +u= . (13)

=
In Newtonian gravity k=GMm so the r.h.s becomes GM/h2.
We recognise that above equation is just the equation of a simple
harmonic oscillator with frequency w= 1. The general solution is:

ul#l) = Acos(f) + Bsin(f) + L (14)
mh-
Let us now determine A and B for specific initial conditions (yet the
conclusions we shall draw concerning the possible orbit solutions remain
general). Consider a case where a particle of mass m is projected at
distance a from the centre of the force with velocity v, in a direction
perpendicular to the radius vector from the centre to the projection
point. Without loss of generality we define 8 = 0 to correspond to time
t= 0. We then have, at t= 0, tangent velocity v¢ =aB =v while the radial
velocity vanishes, v, = 0. The tangent motion simply fixes the angular
momentum: according to (9) h=r’0'=ave=av. Using the initial condition

for the radial velocity together with (9) we have:

v, (15)

. _.,__i____.
WB=0) = = ,h_“

This should be compared to the derivative of u according to our solution
(14)



u'(#) = —Asin(f) + Beos(f) (16)

leading to the conclusion that B= 0. Finally the initial condition for the
position yields;

k 1
u(f) = Acos(0) + Bsin(0) + — = -
mhs a

. )
Ta mh?
We therefore get the following orbit solution
1 1 k . k
;— (E = m)('ﬁh'ﬂ.“m
Or
i !
" T+ ecos(®) (18)
where we defined
mh= I (19)

We recognise that our solution for the orbit (18) describes a conic
section where r measures the distance from the focal point to the orbit
(the centre of the force is at the focal point). Depending on the value of
the eccentricity(a dimensionless parameter), it is a circle (€= 0), an
ellipse (0<€<1), a parabola (€= 1), or a hyperbola (€>1).

g . e

ix

Fig(2): The three conic sections described by eq. (18), here shown for 1=



3 and €=0.61 (ellipse), €=1(parabola) and €=1.5 (hyperbola) . Note
that in all cases the origin (r= 0) corresponds to the centre of force: this

is a focal point of these conic section

. : : . k GM
e a circular orbit ¥ = [ for ¢ = 0, that is for a = - = — .
M, Uy
—— _—e : GAM 2G M
e an elliptic orbit (0 < ¢ < 1) for < 3 < — .
Uy vg
: il , 2GM
e a parabolic orbit (e = 1) for a = ——.
vi

a hyperbolic orbit (¢ > 1) for a >

Kepler's Laws

The motions of the planets, as they seemingly wander against the
background of the stars, have been a puzzle since the dawn of history.
The "loop-the-loop" motion of Mars, shown in Fig(3). below, was parti-
cularly baffling. Johannes Kepler (I571-1630), after a lifetime of
study,worked out the empirical laws that govern these motions. Tycho
Brahe (1546- 1601), the last of the great astronomers to make obser-
vations without the help of a telescope, compiled the extensive data

from which Kepler was able to derive the three laws of planetary motion
that now bear Kepler's name. Later, Newton (1642-1727) showed that
his law of gravitation leads to Kepler's laws.

In this section we discuss each of Kepler's three laws. Although here we
apply the laws to planets orbiting the Sun, they hold equally well for
satellites, either natural or artiflcial, orbiting Earth or any other massive
central body.

1. THE LAW OF ORBITS: All planets move in elliptical orbits. with
the Sun at one focus. Figure (3) shows a planet of mass m moving in
such an orbit around the Sun, whose mass is M.We assume that M * m,
so that the center of mass of the planet - Sun system is approximately at
the center of the Sun. The orbit in Fig. (3) is described by giving its
semi-major axis a and its eccentricity e, the latter defined so that ea ts
the distance from the center of the ellipse to either focus F or F'. An

eccentricity of zero corresponds to a circle, in which the two foci merge



to a single central point. The eccentricities of the planetary orbits are
not large; so if the orbits are drawn to scale, they look circular. The
eccentricity of the ellipse of Fig. (3), which has been exaggerated for
clarity, is 0.74.The eccentricity of Earth's orbit is only 0.0167 .

-H._ g
Fig (8):A planet of mass m o _m
moving in an elliptical orbit | - ’
around the Sun. The Sun, of | M__

mass M,is at one focus F of |

the ellipse. The other focus is 1

F', which is located in empty

space. Fach focus is a distance I~ o
ea from the

ellipse's center, with e being the eccentricity of the ellipse The semima-
jor axis a of. the ellipse, the perihelion (nearest the Sun) distance R,
and the aphelion (farthest from the Sun) distance R, are also shown.

THE LAW OF AREAS: A line that connects a planet to the Sun
sweeps out equal areas in the plane of the planet's orbit in equal time
intervals; that is, the rate dA/dt at which it sweeps out area A is
constant. Qualitatively, this second law tells us that the planet will move
most slowly when it is farthest from the Sun and most rapidly when it is
nearest to the Sun. As it turns out, Kepler's second law is totally equi-

valent to the law of conservation of angular momentum. Let us prove it.

{a) - {h)

Fig(4) (a) In time At,the line r connecting the planet to the Sun moves
through an angle A®, sweeping out an area AA (shaded) .(b) The linear



momentum p of the planet and the components of 7.

The area of the shaded wedge in Fig. (4)a closely approximates the area
swept out in time At by a line connecting the Sun and the planet, which
are separated by distance r. The area AA of the wedge is approximately
the area of a triangle with base rA© and height r. Since the area of a
triangle is one-half of the base times the height, AA= %730 . This

expression for AA becomes more exact as At (hence AB) ap-
proaches zero. The instantaneous rate at which area is being swept out is
then

a T (1)

in which W is the angular speed of the rotating line connecting Sun and
planet. Figure(4)b shows the linear momentum 7 the planet, along with

the radial and perpendicular components of i. Also we know (L =1p | )

the magnitude of the angular momentum L of the planet about the Sun
is given by the product of r and P1 ,the component of 5 perpendicular
to r. Here, for a planet of mass m,

L= =(r)mv)=(rmur)

4
= mrom,

(2)

Where v = rw
Eliminating r’w between Egs.(1) and (2) leads to

dA L
— = (3)

di 2m

It dA/dt rs constant, as Kepler said it is, then Eq.(3) means that L must
also be constant-angular momentum is conserved. Kepler's second law is
indeed equivalent to the law of conservation of angular momentum.

3. THE LAW O F PERIODS

The square of the periods is proportional to the ¢ ube of the semimajor
axis of its orbit.

To see this, consider the circular orbit of Fig. (5), with radius r (the



radius of

a circle is equivalent to the semimajor axis of an ellipse).

-

—

Fig(5)A planet of mass m moving around the Sun in a circular orbit

of radius r.
Applying Newton's second law (F = ma) to the orbiting planet in Fig.
(5) yields

GM
— ,m = (m){w’r).
’

Here a = 1’W = 2r/T is known as the centripetal acceleration. T

represents the period of motion. Thus we obtain Kepler's third law as;

&

e 4173)
T? = 3
(GM ,

This is known as the law of periods. The quantity in parentheses is a
constant that depends only on the mass M of. The central body about
which the planet orbits. Above Equation holds also for elliptical orbits,
provided we replace r with a, the semimajor axis of the ellipse.

Gravitational law and Field

Physicists like to study seemingly unrelated phenomena to show that a
relationship can be found if the phenomena are examined closely enough.
This search for unification has been going on for centuries. In 1665, the

23-year-old Isaac Newton made a basic contribution to physics when he



showed that the force that holds the Moon in its orbit is the same force
that makes an apple fall. We take this knowledge so much for granted
now that it is not easy for us to comprehend the ancient belief that the
motions of earthbound bodies and heavenly bodies were different in kind
and were governed by different laws. Newton concluded not only that
Earth attracts both apples and the Moon but also that every body in
the universe attracts every other body; this tendency of bodies to move
toward each other is called gravitation. Newton's conclusion takes a little
getting used to, because the familiar attraction of Earth for earth-
bound bodies is so great that it overwhelms the attraction that
earthbound bodies have for each other. For example, Earth attracts an
apple with a force magnitude of about 0.8 N. You also attract a nearby
apple (and it attracts you), but the force of attraction has less
magnitude than the weight of a speck of dust. Newton proposed a force
law that we call Newton's law of gravitation: Every particle attracts any
other particle with a gravitational force of magnitude

. mym;

P

F

Here m;, and m, are the masses of the particles, r is the distance between
them, and G is the gravitational constant, with a value that is now

known to be
G = 6.67 X 1071 N-m?kg’
= 6.67 X 107" m¥kg - %,

In vector form we can write;

The strength of the gravitational force that is, how strongly two
particles with given masses at a given separation attract

each other depends on the value of the gravitational constant G. If G by
some miracle-were suddenly multiplied by a factor of 10, you would be
crushed to the floor by Earth's attraction. If G were divided by this



factor, Earth's attraction would be so weak that you could jump over a
building. Although Newton's law of gravitation applies strictly to
particles, we can also apply it to real objects as long as the sizes of the
objects are small relative to the distance between them. The Moon and
Earth are far enough apart so that, to a good approximation, we can
treat them both as particles-but what about an apple and Earth? From
the point of view of the apple, the broad and level Earth, stretching out

to the horizon beneath the apple, certainly does not look like a particle.

A gravitational field is the force field that exists in the space around
every mass or group of masses. This field extends out in all directions,
but the magnitude of the gravitational force decreases as the distance
from the object increases. It is measured in units of force per mass,
usually newtons per kilogram (N/kg). A gravitational field is a type of
force field and is analogous to electric and magnetic fields for electrically

charged particles and magnets, respectively.

There are two ways of showing the gravitational field around an object:
with arrows and with field lines. Both of these are shown in the picture
below. Arrows show the magnitude and direction of the force at different
points in space. The longer the arrow, the greater the magnitude. Field
lines show the direction the force would act on an object placed at that
point in space. The magnitude of the field is represented by the spacing
of the lines. The closer the lines are to each other, the higher the
magnitude. 1
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\ ‘
' : 3
L ’ “\

The gravitational field varies slightly at the Earth's surface. For



example, the field is slightly stronger than average over subterranean

lead deposits.

Field due to spherical shell

oy

-———/

We imagine a hollow spherical shell of radius a, surface density 0, and a
point P at a distance r from the centre of the sphere. Consider an
elemental zone of thickness 6x. The mass of this element is 2Mao 6x. (In
case you doubt this, or you didn’t know, “the area of a zone on the
surface of a sphere is equal to the corresponding area projected on to the
circumscribing cylinder”.) The field due to this zone, in the direction PO
1S
2nacG cos B dx

EJZ

Let’s express this all in terms of a single variable, & We are going to

have to express x and 0 in terms of & We have ,

a =r +& —2fcosB =r" +& -2m,
from which,

ri-a +§

My
d

and A=

cosB = —
2r¢ r

Therefore the field at P due to the zone is m(jﬁ(l i ]55..

r o\

o
[

If P is an external point, in order to find the field due to the entire



spherical shell, we integrate from & = r—a to r+ a This results in
oM

g= % .
But if P is an internal point, in order to find the field due to the entire
spherical shell, we integrate from €& = a —r to a+ r, which results in
g=0. Thus we have the important result that the field at an external
point due to a hollow spherical shell is exactly the same as if all the
mass were concentrated at a point at the centre of the sphere, whereas
the field inside the sphere is zero.

Potential due to spherical shell

Outside the sphere, the field and the potential are just as if all the
mass were concentrated at a point in the centre. The potential, then, out
side the sphere, is just —GM /r.

Inside the sphere, the field is zero and therefore the potential is uniform
and is equal to the potential at the surface, which is —GM /a. The reader
should draw a graph of the potential as a function of distance from
centre of the sphere. There is a discontinuity in the slope of the potential
(and hence in the field) at the surface.

Field due to solid Sphere

A solid sphere is just lots of hollow spheres nested together. Therefore,
the field at an external point is just the same as if all the mass were
concentrated at the centre, and the field at an internal point P is the
same is if all the mass interior to P, namely M,, were concentrated at the
centre, the mass exterior to P not contributing at all to the field at P.
This is true not only for a sphere of uniform density, but of any sphere
in which the density depends only of the distance from the centre — i.e.,
any spherically symmetric distribution of matter.

3
If the sphere is uniform, we have ]]6" = 2—3, so the field inside is

~ GM, GMr
=—" =

g

r a3



Thus, inside a uniform solid sphere, the field increases linearly from zero
at the centre to GM/a’ at the surface, and thereafter it falls off as
GM/r’. If a uniform hollow sphere has a narrow hole bored through it,
and a small particle of mass m is allowed to drop through the hole, the
particle will experience a force towards the centre of GMmr/a’, and will

consequently oscillate with period P given by

2
2 2

P = e

=

P is a point inside the bubble. The
field at P is equal to the field due to
the entire sphere minus the field due
to the missing mass of the bubble.
That is, it is

g = —<nGpr, — (—31Gpr,) = —gnﬁp(r, -1, = —3ndpe

That is, the
field at P is uniform (i.e. is independent of the position of P) and is

parallel to the line joining the centres of the two spheres.

Potential due to solid Sphere

The potential outside a solid sphere is
just the same as if all the mass were
concentrated at a point in the centre.
This is so, even if the density is not
uniform, and long as it is spherically
distributed. We are going to find the
potential at a point P inside a uniform

sphere of radius a, mass M, density P,



at a distance r from the centre (r< a). We can do this in two parts.

First, there is the potential from that part of the sphere “below” P. This
3

is -Gm,/r Where M, = % is the mass within radius r. Now we need to

deal with the material “above” P. Consider a spherical shell of radii x,
x+ Ox. Its mass is

511 = 4maidx o 3My dr
ina® a
The potential from this shell is
_GMix = — 3GMx bx
a4

This is to be integrated from x= 0 to a, and we must then add the

contribution from the material “below” P . The final result is

GM
-

3
2a

Ja” - r]

w:

GM
¢———— (hyperbolal
5
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L 3
| 2a°
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Distance from centre

Fig(5) shows the potential both inside and outside a wuniform solid



sphere. The potential is in units of —GM/r, and distance is in units of

a, the radius of the sphere.

Rigid Body motion
A rigid body is a collection of particles with fixed relative positions, independent of the
motion carried out by the body. The dynamics of a rigid body has been discussed in our
introductory courses, and the techniques discussed in these courses allow us to solve many
problems in which the motion can be reduced to two-dimensional motion. In this special case,
we found that the angular momentum associated with the rotation of the rigid object is directed
in the same direction as the angular velocity:

L=1®

In this equation, / is the moment of inertia of the rigid body which was defined as

:
1= mr
i

where r; is the distance of mass m, from the rotation axis. We also found that the kinetic energy
of the body, associated with its rotation, is equal to

1,
T=—Iw
2
The complexity of the motion increases when we need three dimensions to describe the motion.

In classical mechanics a rigid body is usually considered as a continuous
mass distribution, while in quantum mechanics a rigid body is usually
thought of as a collection of point masses. For instance, in quantum
mechanics molecules (consisting of the point masses: electrons and

nuclei) are often seen as rigid bodies

The general motion of a rigid body of mass m consists of a translation of
the center of mass with velocity V., and a rotation about the center of
mass with all elements of the rigid body rotating with the same angular

velocity We,. Figure(6) shows the center of mass of a thrown rigid rod



follows a parabolic trajectory while the rod rotates about the center of

1mass.

Fig(6)The center of mass of a thrown rigid rod follows a parabolic

trajectory while the rod rotates about the center of mass.

Rigid body rotation

Consider a rigid body executing pure rotational motion (i.e., rotational
motion which has no translational component). It is possible to define an
axis of rotation (which, for the sake of simplicity, is assumed to pass
through the body)--this axis corresponds to the straight-line which is the
locus of all points inside the body which remain stationary as the body
rotates. A general point located inside the body executes circular
motion which is centred on the rotation axis, and orientated in the plane
perpendicular to this axis. In the following, we tacitly assume that the

axis of rotation remains fixed.

rigid body

B\ axis of rotation



Figure above shows a typical rigidly rotating body. The axis of rotation
is the line AB. A general point P lying within the body executes a
circular orbit, centred on AE, in the plane perpendicular to AB. Let
the line QF be a radius of this orbit which links the axis of rotation to

the instantaneous position of P at time ¢. Obviously, this implies that
@F is normal to AB. Suppose that at time t + d¢ point P has moved to

P’, and the radius @F has rotated through an angle d¢. The

instantaneous angular velocity of the body w(t) is defined

U =0Ww,

where o is the perpendicular distance from the axis of rotation to point
FP. Thus, in a rigidly rotating body, the rotation speed increases linearly
with (perpendicular) distance from the axis of rotation.

It is helpful to introduce the angular acceleration «(t) of a rigidly

rotating body: this quantity is defined as the time derivative of the

angular velocity. Thus,

_dw 49
TS T a2

where ¢ is the angular coordinate of some arbitrarily chosen point

reference within the body, measured with respect to the rotation axis.



Note that angular velocities are conventionally measured in radians per
second, whereas angular accelerations are measured in radians per
second squared.

For a body rotating with constant angular velocity, w, the angular

acceleration is zero, and the rotation angle ¢ increases linearly with

time:

B(t) = 0o +wt,

where ¢q = ¢(t = 0). Likewise, for a body rotating with constant angular
acceleration, a, the angular velocity increases linearly with time, so that

w(t) = wy +at,
and the rotation angle satisfies
1
Ot) = do +wpt + §ut3.
wy=w(t=10)

Note that the rotation angle plays the role of displacement, angular
velocity plays the role of (regular) velocity, and angular acceleration

plays the role of (regular) acceleration.



Moment of inertia

We will leave it to your physics class to really explain what moment of inertia means. Very
briefly it measures an object’s resistance (inertia) to a change in its rotational motion. It is
analogous to the way mass measure the resistance to changes in the object’s linear motion.

Because it has to do with rotational motion the moment of inertia is always measured about
a reference line, which is thought of as the axis of rotation.

For a point mass, m, the moment of inertia about the line is
[=md,

where d is the distance from the mass to the line. (The letter I is a standard notation for
moment of inertia. )

If we have a distributed mass we compute the moment of inertia by summing the contribu-
tions of each of its parts. If the mass has a continuous distribution, this sum is, of course,

an integral.

A rigid body B is shown in the diagram below. The unit vectors (e,e,,e,) are fixed in

~1? 27

the body and are directed along a convenient set of axes [x,y, z) that pass through the mass
center G. The moments of inertia of the body about these axes are defined as follows

—_—

G T 2 + A4 pletm)
I, = |0 +z’)dm s\ Jr \
xx 4 / e e

B [ — |

—

B

= = _H(xz + y*)dm /(_~ o 6

where x, y, and z are defined as the e, components of r, . the position vector of P with

- o Ly 't /¢ /
3 = + |
R

respectto G, that is, r, . = xe +ye, + ze..

Parallel Axes Theorem for Moments of Inertia

The inertia (I*) of a body about an axis (i) through any point (A) is equal to the inertia
(I°) of the body about a parallel axis through the mass center G plus the mass (m) times
the distance (d,) between the two axes squared. Or,

I =1° + md® (i=x,y, orz)

Note that moments of inertia are always positive. From the parallel axes theorem, it is
obvious that the minimum moments of inertia of a body occur about axes that pass through
its mass center-.



Moments of inertia of a body about a particular axis measure the distr-
ibution of the body’s mass about that axis. The smaller the inertia the
more the mass is concentrated about the axis. Inertia values can be
found either by measurement or by calculation. Calculations are based
on direct integration or on the "body build-up" technique. In the body
build-up technique, inertias of simple shapes are added to estimate the
inertia of a composite shape.These values are transferred to axes through
the composite mass center using the Parallel Axes Theorem for Moments

of Inertia.

Products of Inertia

The products of inertia of the rigid body are defined as

15 = [(yydm IS = [(@)dm I = [(z) dm

The products of inertia of a body are measures of
symmetry. If a particular plane is a plane of
symmeiry, then the products of inertia associated
with any axis perpendicular to that plane are zero.
For example, consider the thin laminate shown. The
middle plane of the laminate lies in the XY-plane so

that half its thickness is above the plane and half is “v  Thin Laminate
below. Hence, the XY-plane is a plane of symmetry } x
and

f =f =M

Xz ¥z

Bodies of revolution have two planes of symmetry.
For the configuration shown, the XZ and YZ planes are
planes of symmetry. Hence, all products of inertia are
Zzero about the X, Y, and 7 axes. i/ Body of Revolution

N o




Products of inertia are found either by measurement or by calculation.
Calculations arebased on direct integrationor on the "body build-up"
technique. In the body build-up technique, products of inertia of simple
shapes are added to estimate the products of inertia of a composite
shape. The products of inertia of simple shapes (about their individual
mass centers)are found in standard inertia tables. These values are
transferred to axes through the composite mass center using the

Parallel Axes Theorem for Products of Inertia
Parallel Axes Theorem for Products of Inertia

The product of inertia (I.") of a body about a pair of axes (i, j) passing through any
point (A) is equal to the product of inertia (I;') of the body about a set of parallel axes
through the mass center G plus the mass (m) times the product of the coordinates (c,c;) of

G relative to A measured along those axes.

A G . .
I; =1  +mcc (i=xy, orz and j=X}Y, orz)

Products of inertia may be pesitive, negative, or zero.

Euler Equations.

The Fundamental equation of a rotating body is

dL
T=—, 1

dt
is only valid in an inertial frame. However, we have seen that L is most
simply expressed in a frame of reference whose axes are aligned along
the principal axes of rotation of the body. Such a frame of reference
rotates with the body, and is, therefore, non-inertial. Thus, it is helpful
to define two Cartesian coordinate systems, with the same origins. The

first, with coordinates x, y, z, is a fixed inertial frame--let us denote



this the fized frame. The second, with coordinates x', y’, z’, co-rotates
with the body in such a manner that the x'-, y’-, and z'-axes are

always pointing along its principal axes of rotation--we shall refer to this
as the body frame. Since the body frame co-rotates with the body, its
instantaneous angular velocity is the same as that of the body. Hence, it

follows from the analysis

dL ﬂL_|_uJ L ,
—=— x L.
dt dt’

Here, d/dt is the time derivative in the fixed frame, and d/dt’ the time

derivative in the body frame. Combining Equations (1) and (2), we

obtain

dL 3
T=— L.
dt,+w><

Now, in the body frame let T = (Tyr, Ty, Tzr) and w = (Wi, Wyr, wz). Tt
follows that L = {Ixfxf Wyt Iyryr Wy, | {Uzr], where Ly, Iy’y’ and Iy

are the principal moments of inertia. Hence, in the body frame, the

components of Equation (3) yield

Txr — Ix.rxr LiJ'xr - {]y:yr - [Z’Z’) wyr wzr,
Tyr — Iyi’yl' {.L"yr - (Izrzr - Ix’x’] UJZ: Luxr,
: 4
TZF — Izrzr u.]zr = (Ix.rxr - [yryr) wxr wyr,
where "= d/dt'. Here, we have made use of the fact that the moments

of inertia of a rigid body are constant in time in the co-rotating body

frame. The above equations are known as Fuler's equations.



Consider a rigid body which is constrained to rotate about a fixed axis

with constant angular velocity. It follows that (Dyr = LiJHJ =Wy =0.

Hence, Euler's equations (4), reduce to

Txr — —(]_H:H: - Iz_rzr] wgr wzr,
Ty* — —(].zrzr - Ixrx.r) {.U'z_.r wxr,

5
Tz_r — _(]-x’x." - IH:H:] wxr wyr.

These equations specify the components of the steady (in the body
frame) torque exerted on the body by the constraining supports.

Applications of Euler Equations
1 Torque-free motion of a symmetric rigid body

Now consider the case when two of the moments of inertia are equal. This happens when th rigid body is
rotationally symmetric around one axis. Let the z-axis be the axis of symmetry. Then I; = I,. and the
torque-free Euler equations become

0 = Lo —wws(l —I5)
0 = ILon+wws(h —I3)
0 = I3ws

The final equation shows that wy is constant. Defining the constant frequency

-1
ﬂsz( 1_{1 3)

wy = —Asin 0t + Bcos(t

Notice that

wi+uws =A*+B?
so the r and y components of the angular velocity together form a constant length vector that precesses
around the = axis. If the angular velocity is dominated by ws. the remaining components give the object a
“wobble” — it spins slightly off its symmetry axis, precessing. On the other hand, if ws is small. the motion
is a “tumble” — end over end rotation of its symmetry axis.

Remember that this analysis takes place in a frame of reference rotating with angular velocity w. If all
of the motion were about the z-axis, the object would be at rest in the rotating frame. The fact that we
get time dependence of our solution for w means that even in a frame rotating with the body. the body
precesses. If we transform back to the inertial frame. it is also spinning.

wp = Acos(i+ Bsinfil

for wq and. returning to the original equation wq = Qws.



2 The Symmetric Top
The symmetric top is an object with I, = I, # I; The typical figure below

explains this;

Fuler equations become
Ly = wawa(l — 1)

Iywy = —wyws(ly — I3)

So, in this case, we see that W; ,which is the spin about the symmetric
axis, is a constant of motion. In contrast, the spins about the other two

axes are time dependant and satisfy

l..lu‘l . ﬂw‘g _ L;!E — —ﬂw‘l
where
Q=ws(f — fa)fh
is a constant. These equations are solved by

(w1, we) = wp(sin Qt, cos )



for any constant wy. This means that, in the body frame, the direction of the spin is
not constant: it precesses about the e; axis with frequency 2. The direction of the
spin depends on the sign on € or, in other words, whether I, > I3 or [} < I5. This
is drawn in figure below; In an inertial frame, this precession of the spin
looks like a wobble.

C] l,"..l

Fig:The precession of the spin: the direction of precession depends on
whether the object is short and fat (I;> 1,) or tall and skinny (I, < 1,)

Moment of Inertia Tensor.
Consider a rigid body rotating with fixed angular velocity w about an
axis which passes through the origin--see Figure below. Let r; be the

position vector of the ith mass element, whose mass is m;. We expect

this position vector to precess about the axis of rotation (which is
parallel to w) with angular velocity w. It, therefore, that
dr; xr
—_ x O
dt '
As, v =Trxw
Thus, the above equation specifies the velocity, v; = dr;/dt, of each mass

element as the body rotates with fixed angular velocity = about an

axis passing through the origin.



Fig: A rigid rotating body.

The total angular momentum of the body (about the origin) is written

L_Zm,,rx Zmrx[mxrl]_Zml[r Ww— (ri-w)r ]

i=1,M i=1M i=1M

where use has been made of above Equation, and some standard vector

identities. The above formula can be written as a matrix equation of the

form
Lx Lex [xg Lz W
Ly | =] Iix Loy Lz Wy |
L. | - Iz.y | . w,

Here, I is called the moment of inertia about the x-axis, I, the
moment of inertia about the y-axis, L the xy product of inertia, I,
the yz product of inertia, etc. The matrix of the Ij; values is known as

the moment of inertia tensor. Note that each component of the moment
of inertia tensor can be written as either a sum over separate mass

elements, or as an integral over infinitesimal mass elements
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UNIT 111

Simple Harmonic Motion

When a body moves periodically in a straight line on either side of a
point, the motion of body is called the simple harmonic motion. Thus,
the simple harmonic motion is a special case of the periodic motion,
obviously, a simple harmonic motion is definitely a periodic motion, but
all the periodic motions are not the simple harmonic motions.

For example, the motion of earth around the sun is a periodic motion,
but it is not the simple harmonic motion. On the other hand, the motion

of a simple pendulum is simple harmonic motion as well as the periodic.

In a simple harmonic motion, the body moves periodically in a straight
line on either side of its an position such that its acceleration is
proportional to the displacement of the particle and the direction of
acceleration is always towards the mean position. In other words, the

motion of a body under a restoring force is a simple harmonic motion.
Restoring Force

The force, which is directly proportional to the displacement of the body
from its mean position and is directed towards the mean position is
called the restoring force i.e., the restoring force tends to bring the body

back to its mean position.



Conditions or Characteristics of Simple Harmonic Motion

Following are the conditions (or characteristics) of simple harmonic

motion:

(i)The motion must be in straight line on either side of a definite point

(mean position).

(ii)The moving body must pass from its mean position repeatedly after a

definite time i.e., motion must be periodic.

(iii) The acceleration of the moving body must always be proportional to
the displacement of the body from its mean position and the direction of
acceleration must always be towards the mean position, i.e.Acceleration

a displacement and in the direction opposite to displacement.

If at any instant, the displacement of body from its mean position is x,

the acceleration of the body is
a X —x
But by Newton’s law of motion, force = mass x acceleration
Fx—x
Thus, the force acting on the body must be proportional to the
displacement of the body from its mean position and its direction must

be towards the mean position (i.e., the force must be the restoring

force).

A system, whose motion is simple harmonic, is known as the simple

harmonic oscillator.



For example, motion of simple pendulum for small amplitude, motion of
the compound pendulum, motion of the mass attached at the free end of

a spring rigidly fixed at its other end, motion of torsional pendulum etc.

Harmonic Oscillator

A system executing simple harmonic motion is called a simple harmonic
oscillator. In simple harmonic motion, the force acting on the system at
any instant, is directly proportional to the displacement from a fixed
point in its path and the direction of this force is towards that fixed
point. Thus, the system executes the motion under a linear restoring
force. If the displacement of the system from a fixed point is x, the linear
restoring force is -Kx, where K is a constant which is called the force
constant. Thus no other force except the linear restoring force acts on a
simple harmonic oscillator. As a result, the oscillator executes vibrations
of constant amplitude and with a constant frequency. These oscillations

are called the free oscillations.

Let a particle of mass m be executing simple harmonic oscillations. The

acceleration of the particle at displacement x from a fixed point will be

d2X/ dt? . For the particle, RestoringForce o< —displacement

where K is a constant, which is called force constant of the particle. Here
the negative sign tells that the direction of force acting on the particle

(or acceleration) is opposite to the direction of increase in displacement.



See figure below

Restoring force

5 » & &
A 0 P B
e
o a >
d’z —Kz
Acceleration of the particle =
dt? m
K 2
Let — =w then,
m
: . d’x 2
Acceleration of the particle ol —wx 1

Equation (1) is known as differential equation of simple harmonic

oscillator.
Solution of Differential Equation of Simple Harmonic Oscillator

Now we have to find the displacement x of the particle at any instant t

by solving the differential equation (1) of the simple harmonic oscillator.

In equation (1), multiplying by 2( dx/dt),we get

dx d*x
2_
dt di*

el ety e
E(E) + @ E(I }—D

2\
On integrating [d—:) + 0?x? = A (constant)

At the position of maximum displacement, i. e., at x =Za, velocity of

+m2x.21—% = ()

particle dx/dt =0



d 2
Then (d_:;) + w?z? = w?a?
d
Hence (d—f)2 = w?(a® — 2?%)
. . dx 2 2
or velocity of the particle i w/(a? — z?)

Equation (2) tells us the velocity of particle at position x

dx

From equation (2) = wdt

Vi~ 2)

x
Again integrating, sin~'= = wt + ¢(constant)
a

x = asin(wt + ¢)

3

Here a is the amplitude of oscillations and @ is the initial phase of the

motion of particle (whose value can be known from the initial

conditions).

(i) If x = 0 at t = 0 (i.e. the particle  initiates its oscillations from its

mean position), then sin @ = 0 or ¢ = 0, then the displacement equation

of the particle executing simple harmonic motion at any time t will be

X =a sin Wt

(ii) If x = 0 at t = 0 (i.e. , the particle initiates its oscillations from its

maximum displaced position), then sin @ = 0 or ¢ = 2w, then the

displacement equation of the particle executing simple harmonic motion

at any instant t will be
x = asin(wt 4+ 27) = acoswt 4

Time Period and Frequency

It is clear from equations (4) and (5), that



asinw(t + 27 /w) = asinwt  and acosw(t + 2w /w) = acoswt

It is concluded from here that the displacement of the particle at any
instant ( t + 2mM/W) is exactly the same as it was at the instant t i.e.,
the particle comes back to its initial position during its motion exactly
after time it . Hence time period of the particle executing simple

harmonic motion is

i

T=2n 1“,5'7

It is clear from equation (1) that numerically,

acceleration = —w?x

accelration
w = ,
displacement

and time period T = 27‘(‘\/

displacement

accelration

accelration

Since frequency v = 1/T, hence frequency v = 1/2m [ —
displacement

Remember that the quantity w = 2/T is known as the angular

frequency of motion .

Damped harmonic oscillator

In a simple harmonic oscillator, no other force except the linear restoring
force acts. As a result, the oscillator executes vibrations of constant
amplitude and with a constant frequency these oscillations are called the

free oscillations. The total mechanical energy (i.e., kinetic energy +



potential energy) of the oscillator always remains conserved in such

oscillations.

But in practice, free oscillations are not possible. This is because the
medium in which the oscillator executes vibrations, exerts a frictional or
viscous force on the oscillator. This force is called the damping force.
This force acts in direction opposite to the direction of motion due to
which the amplitude of vibration gradually decreases. Hence, the energy
of oscillator also decreases. Such a vibrating system is called damped
harmonic oscillator. For example, the simple pendulum executing
oscillations in air or in any other medium, tuning fork, ballistic

galvanometer are the damped harmonic oscillators.

Thus, a particle executing damped harmonic motion in a medium (i.e.,

damped harmonic oscillator) is acted upon by two forces:

(i) Restoring force which is directly proportional to the displacement
from a fixed point on its path and is in a direction opposite to the
displacement, ie., -Kx where K 1is force constant and x is the

displacement, is the displacement of the particle at any instant.

(ii) Damping force, which is proportional to the velocity of the particle
and is in a direction opposite to motion, i.e., =r[dx/dt] , where r is a

positive constant, which is called the damping coefficient.

If m is the mass of the particle, by Newton’s law, the total force acting

on the particle= md2x/ dt? where d2X/ dt? acceleration of the particle.

Thus the equation of motion of a damped harmonic oscillator will be



4y dx dx rdx K
M—=—r——Kx

or
drt dl dr*

LR 1
dt dt
L

=+ and n'=K/m.
m

It must be noted that unit of damping coefficient r is kg/ sec. Therefore,

the unit of r/ m or 2b) is s™\. Thus the unit of m/r is same as that of the
time. Hence the quantity m/r (or 1/2b) is called the time constant or the
relaxation time. It is represented by t (Tau). Relaxation time is defined
as the time in which the energy of particle reduces to 0.37 times its

maximum initial energy.

Now, we are to find the solution of equation (1) for damped motion. Let

the solution of equation (1) be x = Ae™

)
9
%f A ag® i ZT;" _Agie

Substituting these values in equation (1)

Ac?e +2b A e +niAe® =0
(0?+2ba+m) Ae® =0 or of +2ba+ni=(

—

a=-bz \,llhT—-_rt?- ==btp, where _:Jf,.[.:b;-n?]

Thus the two possible solutions of equation (1) are

X = A1 e( b+ p)t and x = A2 e('b_p) ¢

The general solution of equation (1) is

< = Al olb+p)t 4 Aze('b_ p) t A



—e P A, P g AP 5

Here, A1 and A2 are the constants whose values can be obtained from
the initial condition of motion. There are following three cases possible:
1. When b < n, under damped.

2. When b > n, over damped.

3. When b = n, critically damped.

Case 1. Under-damped Case: If the damping is so small that b <<n
or r /2m<< 4 K/m, then, p = /(b*- n’) = y- (n* -~ b?) = #/(n*- b*) or p
= jw, where w = /(n2- b2). And 7 =-1

Obviously, p is an imaginary quantity, but w is a real quantity.

Then from equation (2)
T = e—bt [Aleiwt + Aze—iwt]

= e "[(A; + A%)coswt + i(A; — Ay)sinwt]

= e Y[ A} (coswt + isinwt) + A*(coswt — isinwt)] 6

Since x is a real quantity, therefore (A;+A;) and i(A;-A;) must also be

real quantities. But A1 and A2 are the complex quantities, therefore

(A1t+As) = asin @ and z'(Al — A2) = a

(,Cos® in above .equation (3)

-bt

X = [ a, sin @ cos wt + a, cos @ sin wt]

0

bt

x =a e sin (Wt+Q) 7

This expression represents the damped harmonic motion where
amplitude decreases exponentially with time. Hence, it is not a simple
harmonic motion but it is an oscillatory motion, whose angular

frequency is



l"fi'f -
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D= Lj(n" =-0")= | -
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The amplitude of motion is a = aoe_bt = aoe'l/ 2t

The displacement-time graph for the damped harmonic oscillations is
shown in Figure below. It is evident that the amplitude of motion

decreases exponentially.

Dol s

FIGURE: Displacement-time graph for the damped harmonic oscillations

Case 2. Over-damped Case: If the damping is too large that b > n,
then p = /(b2- n2) is a real quantity and p <b.

Then from equation ( 4) Xzale(b_p)t—l-aQe_(bﬂ:))t 9

Since, p < b, hence’ both the quantities on RHS of above equation
decrease exponentially with time and there will no oscillations ( See

Figure below).



Overdamped Oscillator

/

e

Such a motion is called the dead beat or a periodic motion. This type of

motion is used in the dead beat galvanometer.
Case 3. Critically Damped Case: If b = n, then p =0

From equation (4)
bt _bt,
x=(A +A)e =Ce 10
Where A +A, =c (a contant)

Since, there is only one constant in above equation, therefore it cannot

be the solution of second order differential equation (1)
Now if we consider that (b2 — n2) —=p a very small quantity, then
-bt Pt -pt
x=e¢  [A e + A "]
= Pt A, (T +pt+ .. ) + A (- pt + ... )]
Since, p is very small, therefore neglecting the terms p° and p’, ...
bt _ bt
x=¢€ [(A;+Ay) +p (A1 - Ag)t] =e [P+ Qt] 11
where, A1 + A2 = P and p[A1 + AQ] =Q

If initially at t= 0, the displacement of particle is x= x0



and velocity v = dx/dt= V, , then at t = 0, x, = P and from

dx/ dt = Qe — be®' (P + Qt) at t =0, V, = Q- bP.
Hence, Q = Vo T bXO

-bt

Then, x =[x, + (v, + b _) t]e 12
1.0
B
Twice critical
B darmping
x 7
x
. % Critical
2 . ¢ Damping -
0 0 e e e e = = Time
P 0.4 .._:__ 06 - 1.0 .___:- 1.2 14"’ 1.6 {szec)
-2
-4 : : :
P Oscillator with resonant
: ; Underdamped frequency 10 radds
-6 : started from rest.
LS after Barger&0lsson

In the above expression, due to the coefficient [x, + (v, + bx)t], first

the value of x increases with increase in t, but later on the exponential

term e¢” becomes more pronounced due to which the value of x falls to

zero in a small time interval and no oscillations occur.

Power Dissipation in Damped Harmonic Oscillator

We have read that in damped oscillations, the mechanical energy of the
particle continuously decreases due to the damping forces. As a result,

the amplitude of motion also decreases with time. The displacement of

particle executing damped harmonic motion at any instant tis



X :aOe'bt sin (wt+@) from education

Velocity of the particle V= dx/dt

= aOe‘bt [(-b) sin (wt+ @) + w cos (wt + @)]

If m is the mass of the particle, the kinetic energy of the particle is

-
-

K :-iIr'l'illlnll:.jl::i:I
2 \dt)
] 2 M ad bl 5 %
. 2 mage - [IF sin? (@t +4) + 0 cos? (0t + ) - 2be sin (ot + 6) cos (o + ) 13
And potential energy
2 3 14
e 2 o THGNX
LT = J; i Tx adx 5

1 . i Sl
= — m way? e P sin? (wi + P)

Average total energy of oscillator in a periodic time = Average kinetic

energy + Average potential energy

Now, to evaluate the average kinetic energy and the average potential
energy in one time period, we can assume that the amplitude of

oscillation remains nearly unchanged i.e.,

2" remains nearly constant. Since the average value of sin® (wt-+@®)and

cos? (wt +@)is 1/2 for one time period and average value of

sin (wt +@)cos (wt + @) is zero over one time period, therefore in a

period of time.

Average Kinetic energy =

2 _—2b P +o®) 1 2 on? o —2hi 15
e &



And the average potential energy

1 a7 m =k ] ]
2 —abp 3 T o
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2 + W —

Hence, the average total energy in one periodic time

= 1 - 2 Rk
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It is clear from above equation that the average energy of system in

damped oscillations decreases exponentially with time as shown in

Figure below.

E(t)

1

The rate of loss of energy or the average power loss at any instant

Clearly, the rate of loss of energy at any instant depends average energy
with time in damped oscillator on the damping of the system (more the

value of b, more is the rate of loss in energy).

This loss in energy generally appears in the form of heat energy of the



oscillating system.
Quality Factor of Damped Harmonic Oscillator

The quality factor of an oscillator expresses its efficiency. It is
represented by the letter (. Since there is no energy loss in free

oscillations of an ideal oscillator, its efficiency is maximum.

Definition: The quality factor of an oscillator is defined as the product
of 21 with the ratio of the average energy stored in the oscillator at any

instant to the loss in energy in one periodic time.
i.e, Quality factor
(QQ =21 * energy stored at any instant / energy lost in one second

But from equation (17)

Q=1ﬂxEur=E,Em l_ﬂ:[u
DT p r
[+ F'lll"' T or j::!:. .'._r:' — B §
| —wt

Thus, quality factor is a dimensionless quantity. More the relaxation

time of an oscillator, more is its quality factor

Driven Harmonic Oscillator
When an external periodic force is applied on a system, the force
imports a periodic pulse to the system so that the loss in energy in doing

work against the dissipative forces is recovered.

As a result, the system is continuously oscillates. In the initial stages,
the system tends to execute oscillations with the natural frequency (or

frequency of free vibrations), while the impressed periodic force tries to



impose its own frequency on it. Therefore, the free vibrations of the
body soon die out and ultimately, the system starts oscillating with a
constant amplitude and with the frequency equal to that of the
impressed force. This is called the steady state of an oscillator. These
vibrations are called the forced vibrations. The force impressed on the
system is called the driver and the system which executes forced vibr-
ations, is called the forced or driven harmonic oscillator.

Thus a particle executing the forced harmonic oscillations is acted upon
by the following three forces:

(i) A linear restoring force(= — Kx), which is directly proportional to
the displacement from a fixed point and is in a direction opposite to the

displacement.

(ii) A damping force ( =- r dx/dt),which is directly proportional to the

velocity and is in direction opposite to the motion.

An external periodic force(F=F0 sin wt)where FO0 is the amplitude of
the impressed force and w is the angular frequency of the impressed

force.

If m be the mass of particle executing forced oscillations and d’x / dt: is

its acceleration at dt any instant, then by Newton’s law.

Total force acting on the particle = md 2X/ dt?

The equation of motion of forced harmonic oscillations will be



d*x dx

—=—Kx—r— +F
m = T
m d-f I d_t; + Kx = F, sin !
dt* dt

d’x rdx K | -

— 4 = —— 4 — X = — sin 0¥ 1

dt - m dif m m
d.’.‘

x - :
+ 2b + n*x = f sin w!
dt* dt

where, r/m = 2b, K/m= n? and F/m=f

Obviously from equation (1), the differential equation for the free

oscillations of the system will be d*x +n’x = 0,
where n = /K/m =angular frequency of free oscillations.
Transient and Steady States

We have read that on applying an external periodic force, initially the
system tends to oscillate with an angular frequency W, = v (n2—b2) due to

damping, but the driving force of angular frequency w acting on the
system forces it to oscillate with its own frequency. In this way, the

actual motion of system is obtained by the superposition of two

= /(0*b?) and w, = w

oscillations, whose angular frequencies are w 5

1
respectively. Hence if w# n, the solution of the equation (1) can be

written as follows
X = X1+ X

where, x; is the solution of equation (1), when the external force is zero.

Then from equation (1)



d? d
1 +26ﬂ+n2x120 2

dt? dt
d? d
dt? + 2b% +nlre =0 = fsinwt 3

Remember that in the complete solution x = x; + X, x; is known as the

complementary function and x, is known as the particular integral.

The complementary function represented by equation (2) decreases expo-
nentially with time and after some time, this term vanishes, hence it is
also known as the transient solution of the forced harmonic oscillator. In
this way, the system in transient state, oscillates with a frequency diffe-

rent from the natural frequency or the frequency of the driving force.

After a long time, when t >> t, the natural oscillations of the system
vanishes due to damping and then the system oscillates with the
frequency of the driving force. This state of the system is known as the

steady state.

Let the solution of equation (2) in the steady state be x, = A sin (wt-8).
[Since in the steady state, the amplitude of forced oscillation is constant
(=A, say) and the frequency is equal to the frequency of impressed force
i.e., W/2m. Here O is the phase difference between the displacement and

the impressed force.Then

dx,/dt = A W cos (W t- B) and d2X2/dt2 = -AWw’ sin (W t- ©)
Substituting these values in equation (3)

-AW? - sin(wt- 0)+2bAwcos(wt- 8) + n°Asin(wt- 8) = fsin(wWt- 0+ )
or

A(n*-w”)sin(w -8 )+2bAwcos(Wt-0)=fsin(w t- 8)cos®+cos(Wt-0 )sin O]



Since this equation is valid for all value of t, therefore by equating the

coefficients of sin(W t- 8) and cos(Ww t- ) separately, we get
A(n*-w”) = fcos® and 2bAw = fsin O
Squaring and adding the above equations

A%[(n*-u®)? + 4b” W? ] = fcos, B+ sin” 6]

A f

] {4!?2[&2 +(n? - H}Z)Z]UZ

fsin\‘?l= A 2bw )
fcos® An -w?) n®-o°

0 = tan™ {—,,m )

tan O =

2 2
n —o

Putting these values of A and 6 in x, =Asin (W t- 0), the solution of

equation (3) is

X = . sin | wf — tan™ 200
2 [4bzﬂ]2 + (HZ _mE)Z]L’Z ?‘12 _m2

Substituting the values of x. and X,; the complete solution of differential

1

equation (1) of forced oscillator is given as

d

(46%07 + (1% - 02) ]2

x=aye™ sin (nt +¢) + sin{m‘—tanl ZmeZ]
n - 5

In the above equation, the first term on the RHS which is transient part,
decreases with time and finally its role vanishes. The time upto which it

plays its role, depends on the amount of damping. More damping, more



rapidly this term decreases to zero.

When the damping is zero (i.e., when b = 0), in steady state
X = f/(n’?—w’g) sin wt 6

and © = 0° (i.e., the driving force and displacement will be in same
phase). It is concluded that the phase difference between the displac-
ement and driving force of a forced oscillator is due to damping. It is
also clear that when w = n, the amplitude of oscillations become infinite.

This condition is known as Resonance.

Figure below represents the variation of the transient displacement X,

steady displacement x_ and their sum, i.e., total displacement x with

2

time t of a forced oscillator for low damping.

(a) Variation of transient displacement x, with time

t ——>»

(b) Variation of steady displacement x, with time
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(c) Variation of total displacement x with time
FIGURE: Variation of displacement of a forced oscillator with time

Above equation gives the displacement of the forced oscillator at any
instant t. It is clear that the amplitude of the driven oscillator in steady
state does not depend on time t (i.e., it remains constant with time), but

it depends on the frequency roof the external periodic force.

Now we will study the following three cases:

(i) When w<< n, i.e., the frequency of the driving force is much less.
(ii) When w = n, i.e., the state of resonance.

(iii) When W > n, i.e., the frequency of the driving force is much high.

Case (i) When W << n, i.e., the driving frequency is less than the
natural frequency of the driven. For low damping (when b = 0), from

equation (4) and equation (5)
tan 8 = 0 or e = 00 7

Thus in this case, the displacement is in phase with the driving force
and the amplitude of oscillations does not depend on the mass and

damping, but only depends on the force constant.

Case (ii). When W = n, i.e., the frequency of driver is equal to the

natural frequency of the driven. Then from equation (4)



g f =f'r=f'[= Fc,/m =F|:|
2bo n (r/m)n nr 3

Since t = 1/2b and W =n |

This is called the state of resonance. Thus at resonance, the amplitude of
oscillation depends on the damping coefficient r. Low the damping, more

is the amplitude. If damping is zero (i.e., r = 0 or ‘t = 00),
A,.x = oo(infinite)
From, equation (4) tan 8 = oo or 8= 11/ 2

i.e., at resonance, the displacement of the oscillator lags behind the
driving force in phase by T/ 2. Remember that the amplitude
represented by equation (8) is not maximum. The reason behind it is as

follows:

B f
From, A= \/[4b2w2 e

it is clear that for A to be maximum, the value of the term

% [J(qcb?m? +(n? - mz}zJ =0

i 2 v. 2] =
= [4b%0? + (12 - 0?)?] =0

must be minimum. i.e.,
8b%W + 2(n*-w?)?% (- 2 W) = 0

2 2 52 2
W" =n" - 2b" = w” (Say)



i / 7

e

i J(@b?n? — ab*) ¥ 2b/(n* - b?)

Thus, at a particular frequency of the driver, the amplitude of oscillator
becomes maximum. This phenomenon is called the amplitude resonance
and this particular frequency is called the resonance frequency. The

resonant frequency of forced harmonic oscillator

_o 1
i

If damping is zero (i.e., b = 0), than W, = n (i.e., the resonant angular

(n® - 2b%)

frequency of the oscillator is equal to the natural angular frequency of
the driven) and maximum amplitude Amax =infinite. Figure 1.15 shows
the resonant amplitude of different case.When an external periodic force
is applied on a system, the force imports a periodic pulse to the system
so that the loss in energy in doing work against the dissipative forces is

recovered

¢—— Zero damping

Low damping

High damping

Amplitude A ——»

Driving frequency @ ——»
FIGURE: Variation of phase difference with frequency in steady state



Anharmonic Oscillator

In classical cases, anharmonicity is the deviation of a system from being
a hormonic oscillator. An oscillator that is not oscillating in S.H.M is
known as an anharmonic oscillator where the system can be
approximated to a harmonic oscillator and the anharmonicity can be
calculated using perturbation. If the anharmonicity is large, then it

involves higher physics.

As a result, oscillations with frequencies 2W and 3W etc., where is the
w fundamental frequency of the oscillator, appear. Furthermore, the
frequency W, deviates from the frequency W of the harmonic oscillations.
As a first approximation, the frequency shift AW = W- Wy is

proportional to the square of the oscillation amplitude A

Aw ox A2

In a system of oscillators with natural frequencies wa , wp ...

anharmonicity results in additional oscillations with frequencies .

Wy T Wg

Lissajous figures

Lissajous Figures were first described in 1815 by Nathaniel Bowditch
(1773-1838), who is best known today for his book, "The New American
Practical Navigator", still available today. He also wrote widely on
mathematics and astronomy, while pursuing a career as a navigator,
surveyor, actuary and insurance company president, as well as being a

member of the Corporation of Harvard College.

A Lissajous figure is produced by taking two sine waves and displaying



them at right angles to each other. This is easily done on an oscilloscope
in XY mode. Let's explain the phenomenon by taking two sine waves

have equal amplitudes.

Case(I):When the two sine waves
are of equal frequency and in-phase,

we get a diagonal line to the right .

Case(II):When the two sine waves
are of equal frequency and 180
degrees out-of-phase we get a

diagonal line to the left.

Case(III):When the two sine waves
are of equal frequency and 90
degrees out-of-phase we get a

circle. This can be easily shown, \

N\

X = sin(a) and Y = sin(a 4+ 90) = cos(a)
X*X 4+ Y*Y = sin(a) * sin(a) 4+ cos(a) * cos(a) =1

which is the parametric equation for a circle having a radius of 1.



Case(IV):1f the two sine waves are
in phase but the frequency of the
horizontal sine wave is twice the
frequency of the vertical sine

wave we get the pattern shown here.

Case(V): If the sine wave 90 degrees
out-of-phase with the frequency of
the horizontal sine wave three times

the frequency of the vertical sine

wave.

Prepared by:
Muzamil Ahmad Teli
Assistant Professor

Department of Physics
Government Degree College Boys Anantnag
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UNIT 1V

Newtonian Relativity

Galileo and Newton described the motion of objects with respect to
a particular reference frame, which is basically a coordinate system
attached to a particular observer.

A reference frame in which Newton’s Laws hold is called an

inertial frame. It is a frame that is not accelerating. Newtonian
Principle of Relativity (Galilean Invariance):

If Newton’s Laws hold in one inertial frame, they also hold in

a reference frame moving at a constant velocity relative to the first
frame. So the other frame is also an inertial frame. We can see this

if we make a Galilean transformation:

Galilean Transformation
Consider a reference frame S’ moving at a constant velocity with

respect to a frame S:



Consider
tossing a ball
vertically in a
moving car

X X
7 7'
X' = x+vt' X =x - vt'
y=y y =y
z =12 z' =z
t =t t' =1

These transformation equations show you how to convert a

coordinate measured in one reference frame to the equivalent

coordinate in the other reference frame. Implicit in a Galilean

transformation is that time is universal (time runs at the same rate

in all frames).

Now consider the action of a force in one reference frame. For

example, the force of gravity causes a dropped ball to accelerate:

y component:

/ / d2y/
F y = ma 4 = mW
But Since y' =y (t” =t)
a, = ay and Fy = I,



X component:

/ / d233/ d2 dzﬂf
Fx:max:mﬁzm@(x—vt):mﬁ:ﬂc
a; = Qy and Fx/ = F,

Since the acceleration of the ball is the same in each reference
frame, and thus the force acting on the ball, Newton’s Laws are
valid in both frames. Each is an inertial frame. Note that since the
force is identical in each frame, there is noway to detect which
frame is moving and which is not. You can only detect relative
motion. For example, if a jet flies west at 1000 mph at the equator,
is the jet moving or is the Earth moving?

The jet flies over the surface of the Earth, but with respect to the
Sun the jet is not moving and the Earth is turning beneath it! The
fact that we cannot detect absolute motion is known as Relativity.

It is only relative motion that matters.

The Michelson-Morley Experiment

The Earth orbits around the sun at a high orbital speed, about 10
‘c, so an obvious experiment is to try to find the effects of the
Earth’s motion through the ether. Even though we don’t know how

fast the sun might be moving through the ether, the Earth’s orbital



velocity changes significantly throughout the year because of its
change in direction, even if its orbital speed is nearly constant.
Albert Michelson (1852— 1931) performed perhaps the most
significant American physics experiment of the 1800s. Michelson,
who was the first U.S. citizen to receive the Nobel Prize in Physics
(1907), was an ingenious scientist who built an extremely precise
device called an interferometer, which measures the phase difference
between two light waves. Michelson used his interferometer to

detect the difference in the speed of light passing through the ether
in different directions.

An interferometer was used to separate a light beam into two paths
of possibly different length and then recombined. Since light is a
wave, it exhibits the phenomenon of interference when multiple
waves are combined. If two light waves are completely in phase,
then the amplitude of each wave adds constructively . If they are
completely out of phase, the amplitudes subtract destructively.
Interferometers use monochromatic light so that the light wave

consists of nearly a single wavelength. (Today we would use a laser).



Constructive interference Destructive interference

Bright AV ¥4 Dark

The basic technique is shown in Figure below:

The Michelson-Morely interferometer has two paths at right angles

with respect to each other. It is at rest in a laboratory, presumably

traveling through the ether. Considering that the velocity of light is

¢ with respect to the ether, the distance light travels along each

path is different even if the length of each “arm” is the same.

/—Tht MiTad is ™ v
tilled slightly 10 ; ; W i
vary the path \\ D ____ MIFrQr ﬁ- im:fr:.’:-i:-ﬁrgrhc
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We analyze the light
path in the frame of
£ "’l.\ the ether.
C = - s
. |
= |
f

beam splitter : MIFFOF oy and dark
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from ke ft 1o right as
" the light waves
v e T rcombincatA
ez

Although the experiment was sensitive enough to detect the

expected ether drift, to every body's surprise nothing like that was

found. The negative results gave two breath-taking results;



First, ether does not exist and so there is nothing like absolute
motion relative to ether. All motion is relative to a specified frame
of reference, not to a universal one

Second, the speed of light is same for all observers which is not true
for waves requiring material medium for their propagation.
Conclusion: No shift was seen! Nor has one been seen ever since
1887. The conclusion must be that the ether does not exist. Light

does not require any medium to propagation.

How the shift in
fringes might loolk

Special Theory of Relativity

The theory of relativity deals with the lack of Universal frame of
reference. Special theory published by Einstein in 1905, treats
problems that involves inertial frame of reference.

The theory can be explained under two postulates:

PI. The principle of relativity:

Laws of physics must be the same in all inertial reference frames.



Though this assertion may sound nothing new, it has to be
appreciated that, first of all, this is a postulate. Besides, the change
is in its privilege, now as an apriori assertion. The second postulate
brings in some fundamental changes in our notion of space and
time. While the following sections in this chapter are devoted to a
more detailed discussion on these

aspects, we shall briefly define the bare minimum first, just enough
material to state the postulate. The special theory forces us to look
upon space and time not independently, but as a space-time
continuum. Just as we speak of a point in 3-space given by 3-
coordinates, we have Events(noun) designated by 4 coordinates - 3
spacial and 1 temporal. Thus we have a 4-dimensional space-
time,and every space-time point is defined as an ’Event’. For a start
it may be convenient to think of these Events as usual events(verb).
Consider two Events in space-time, say (ti;x1;y1;21),i = 1,2 (say two
firecrackers bursting in the sky at two different points at different
times). Contrary to our usual notion that time intervals

At= (t;—t,), and lengths Al*’= (Xg—X1)2+(y2—y1)2—|— (zz—zl)Q,are
independently invariant in any reference frame, we have

PII. The space time interval between two Fvents, defined as

A=A — AL,



is an invariant in any inertial reference frame, where ‘¢’
is a universal constant whose value is roughly 3x10°m/s Le., if the
same two events are in another inertial reference frame designated
by the space-time coordinates (t';;x;, v7i, z), i= 1,2, then

¢ (bo—t1) [ ( xo—x1) "+ ( yo—y1) +( 22—21)]

=’ (t'y—t"1) "~ [(xs—x1) +(y 2=y 1) +(z2—21)]

The speed of light happens to be ¢’

Lorentz Transformations

As we switch from one reference frame to another, the simple
velocity addition rule does not hold. Therefore we have to find the
correct relativistic expression for adding velocities, the relations
connecting space-time coordinates in two reference frames in relative
motion. These relations are labeled as Lorentz transformation

relations.

Fixed frame Moving frame
z z

y y'
v
X' )
. > %

= X



The primed frame moves with velocity v in the x direction with
respect to the fixed reference frame. The reference frames coincide
at t=t'=0. The point x' is moving with the primed frame.

The relations are given as;

The inverse relations are given as;

r’+vxT

x'+vt' c?

X = > = 5
v Vv

l-— l——

c c




Here we can use;

Therefore the modified form ofLorentz equations are;

' =7(z-u)




Relativity of simultaneity

The relativity of simultaneity is the concept that distant
simultaneity — whether two spatially separated events occur at the
same time — is not absolute, but depends on the observer's reference
frame . According to the special theory of relativity, it is impossible
to say in an absolute sense that two distinct events occur at the
same time if those events are separated in space. For example, a car
crash in London and another in New York, which appear to happen
at the same time to an observer on the earth, will appear to have
occurred at slightly different times to an observer on an airplane
flying between London and New York. The question of whether the
events are simultaneous is relative: in the stationary earth reference
frame the two accidents may happen at the same time but in other
frames (in a different state of motion relative to the events) the
crash in London may occur first, and in still other frames the New
York crash may occur first. However, if the two events could be
causally connected (i.e. the time between event A and event B is
greater than the distance between them divided by the speed of
light), the order is preserved (i.e., "event A precedes event B'") in all

frames of reference.

A mathematical form of the relativity of simultaneity ('local time")



was introduced by H. Lorentz in 1892, and physically interpreted
(to first order in v/c) as the result of a synchronization using light

signals by Henri Poincare in 1900.

Length Contraction

Now let’s consider what might happen to the length of objects in
relativity. Let an observer in each system K and K' have a meter
stick at rest in his or her own respective system. Each observer lays
the stick down along his or her respective x axis, putting the left
end at xy(or x;' ) and the right end at x, (or x,'). Thus, Frank in
system K measures his stick to be L, = x, - x; . Similarly, in system
K', Mary measures her stick at rest to be Ly’ = x,' - xi'= L. Every
observer measures a meter stick at rest in his or her own system to
have the same length, namely one meter. The length as measured at
rest is called the proper length.

Let system K be at rest and system K' move along the x axis with
speed v. Frank, who is at rest in system K, measures the length of
the stick moving in K'. The difficulty is to measure the ends of the
stick simultaneously. We insist that Frank measure the ends of the
stick at the same time so that t=t,= t,. The events denoted by (x, t)

are ( x;, t) and ( x, , t). We use find;



(2= %) = olt, — )
V1-v*/c

The meter stick is at rest in system K', so the length x.' - x;' must

F ¥
Xy T AT

be the proper length L,'. Denote the length measured by Frank as
L= x, - x;. The times t, and t; are identical, as we insisted, so t, - t;
=0. Notice that the times of measurement

by Mary in her system, t,' and t;,', are not identical. It makes no
difference when Mary makes the measurements in her own system,
because the stick is at rest. However, it makes a big difference when
Frank makes his measurements, because the stick is moving with
speed v with respect to him. The measurements must be done

simultaneously! With these results, the previous equation becomes

or because Ly= Lg';



Notice that Ly>L, so the moving meter stick shrinks according to
Frank. This effect is known as length or space contraction and is

characteristic of relative motion.

Time Dilation

Consider again our two systems K and K' with system K fixed and
system K' moving along the x axis with velocity v as shown in
Figure below. Frank lights a sparkler at position x; in system K. A
clock placed beside the sparkler indicates the time to be t; when the
sparkler is lit and t, when the sparkler goes out . The sparkler
burns for time T, where T = t, - t; . The time difference between
two events occurring at the same position in a system as measured
by a clock at rest in the system is called the proper time. We use
the subscript zero on the time difference T, to denote the proper
time. Now what is the time as determined by Mary who is passing
by (but at rest in her own system K')? All the clocks in both
systems have been synchronized when the systems are at rest with
respect to one another. The two events (sparkler lit and then going
out) do not occur at the same place according to Mary.

She is beside the sparkler when it is lit, but she has moved far away



from the sparkler when it goes out . Her friend Melinda, also at rest
in system K' is beside the sparkler when it goes out. Mary and
Melinda measure the two times for the sparkler to be lit and to go
out in system K' as times t;' andt,'. The Lorentz transformation

relates these times to those measured in system K as

(b= t) = (v/*) (&, - &)
VI-o/d

=t} =

In system K the clock is fixed at x; , so x, — x;= 0; that is, the two
events occur at the same position. The time t, - t; is the proper
time T, , and we denote the time differencet,' - t;' as measured in
the moving system K':

The pictorial representation of the different observation intervals are

given below.
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Thus, the Time Dilation is given as;

T

T'=——t—=yT,
Vicee

Relativistic addition of velocities

Fixed frame Moving frame

z z'
y y'
I:>v
X' )
> X = > X

If the primed frame is traveling with speed V in the positive a-

direction relative to the unprimed frame then Lorentz

transformations can be written as;

de =1, (de' +Vit), dy=dy, dz=d7, dt=1, (dt’+£2df)f
C

Where, |




Divide dx, dy, dz by dt we get;

de (' +Vdt) dy  dy iz d

dt (e + Ldar) by (a4 Lde) A (a4 do)

Or,
de  da'+Vat dy dyf E d7
dt vV de' dt | V dd dt ; V de

Thus in Cartesian coordinates the velocity transformation can be

written as;
Ve v?
—a W -t
v, +V : :
u— vy = U, =
Vv Vv Vv
1+ =S 1+ v 1+ 5

Variation of Mass with Velocity

According to Newtonian mechanics the mass of a body does not
change with velocity. However, conservation laws, especially here the
law of conservation of momentum, hold for any inertial system.

Hence, in order to maintain the momentum conserved in any



isolated system, mass of the body must be related to its velocity. So
according to Einstein, the mass of the body in motion is different
from the mass of the body at rest. We consider two inertial frames S

and S’ as in Figure below;

ik m m, R 5
Ay Y Y, e +—e Beforecollisionin S
S m; ¥, After collisionin S with
zero velocity
0 Q —P XX
z i

Fig: Collision between masses viewed from stationary and moving
frames of reference.

We now consider the collision of two bodies in S’ and view it from

the S. Let the two particles of masses m, and m,, are travelling with

¢ 4

velocity u ‘ and-u ‘ parallel to x-axis in S’ The two bodies collide

and after collision they coalesced into one body.
In System S : Before Collision: Mass of bodies are m1 and m2 e

Let the their velocities are u, and u, respectively.

In System S: After Collision: Mass of the coalesced body is

(m,+ m,) and the velocity Is v .Using law of addition of velocities;



u, = - -u'+v
Uy = ————
i u'v
c* 3"

and ¢

Applying the principle of conservation of momentum of the system

before and after the collision, we have,

m, u, +m, u, = (m; +m,)v

u'+v ~u'+v
m, e g = (m, + m,)v
1+— 1——2
c? c
" u' +v e -u' +7v
1 u'v B W'
1+ 2 1- -
C C
i il
sy = c
Hf
o liads
e

Now, using equations (1) and (2), we have
M fmy = [ 1-(, /¢)* /i 1-(u, fe)”]

Let the body of mass m, is moving with zero velocity in S before

2

collision, i.e., u, = 0,hence, using equation (3), we have,

2



m /m, 1/ 1-(u/c)’

Using common notation as m.,= m, m_, = m, , U, =V, we have by

1 2

using equation (4).
This is the relativistic formula for variation of mass with wvelocity,

where m 0 is the rest mass and m is the relativistic mass of the

body. There are a large numbers of experimental observations of

this enhancement of mass of particles in high energy physics

I. When v << ¢

v << 02, \% 2/ ¢’ is negligible as compared to 1 => ¢ m =m,

When velocity of the moving particle is much smaller as compared
to velocity of light, relativistic mass equals the rest mass.

II. When v= c

V2 =c? v* /=1 =>[1-v* /¢* | ,< 1=>m >m,

When velocity of the moving particle is comparable to velocity of
light, relativistic mass of the body appears to be greater than the

rest mass.

I1I. When v = ¢

V2 =c* | v /02 =1=>m



When velocity of the moving particle is exactly equal to velocity of
light, relativistic mass of the body appears to be infinite and this is

an impractical concept.

IV. When v > c
Vis > v /c2 > 0 m = Imaginary

When velocity of the moving particle is greater as compared to
velocity of light., relativistic mass becomes imaginary and this is an

impractical concept.
Mass Energy Relation

The E=mc’ relationship between mass and energy was first made
explicit in a short piece by Einstein (“On the Origin of Inertia”)
which was written as a postscript to the famous 1905
“Electrodynamics” paper, and which presented the E=mc’ result as
a consequence of the mathematical relationships that had appeared
in the earlier piece. W. L. Fadner has also unearthed and discussed
a number of contemporary pieces that either came close to deriving
E=mc’, or presented similar equations without fully exploring the
consequences or claiming the result to be general.

Consider an object of rest mass m’. If force is applied to the object

such that it starts moving with relativistic velocity (that is



comparable with the speed of light), then its mass will also vary

with variation of mass with energy relation
m = m’/(1-v?/c?)"? (1)

Now suppose that work dw will be done due to this force. If the

object is displaced along x axis, then work will be:

dw = Fdx

or dw = (dp/dt)dx (because from Newton’s 2" law F = dp/dt)
or dw = [d(mv)/dt]dx (because p =mv)

Differentiate R.H.S.

dw = (mdv/dt + vdm/dt)dx (here m is also a variable quantity,

thus m is also differentiated)

or dw = mdvdx/dt + vdmdx/dt

or dw = mvdv + v3dm (2)
Now square equation (1) and cross-multiply

m> (1—v2/02) = m’?

or m’ [(02—\/2)/02] = m”

2 2 2.2 4229
ormec¢c —myv =11 C



Differentiating, we get

c2(2mdm) - m2(2vdv) - V2(2mdm)

or v’dm + mvdv = ¢’dm (3)
Comparing equations (2) and (3), we get

dw = c*dm (4)

The total amount of work done by the applied force in order to
change its velocity from 0 to v (or mass from m’ to m) is achieved
by integrating the L.H.S of the following equation with limits O to
W and R.H.S. from m’ to m (because when work is 0 then body has

rest mass m’ and when work W is done then body has variable mass

m).
[dw = CQIdm
Or W = ¢*(m — m’) (5)

As this work W is done to give motion to the object. Therefore, W
will appear in the form of kinetic energy acquired by the body, Thus

relativistic kinetic energy will be
K==c*m-m) (6)

By definition of potential energy or the rest mass energy, it is equal



to the internal energy of the body. It is also equal to the work done
to bring all the particles which make the object of rest mass m’
Thus the rest mass energy of the body is derived as by integrating
the L.H.S of the following equation with limits 0 to W and R.H.S.
from 0 to m (because when work is 0 then body has rest mass does
not exist and when work W is done then all the particles make an

object of rest mass m’).
[dw = CQIdm
Thus W = m’c’

Therefore, W will appear in the form of rest mass energy of the

body, Thus rest mass energy will be

R = m’c’ (7)

The total energy of the object will be

E = kinetic energy + rest mass energy

Put equations (6) and (7) in this equation, we get
E = 02(m —m’) + m’c’

OrE = mc2

This is the famous Einstein mass-energy equivalence relation.



Space-time four-dimensional continuum

A four-dimensional reference frame, consisting of three dimensions
in space and one dimension in time, used especially in Relativity
Theory as a basis for coordinate systems for identifying the location
and timing of objects and events. In General Relativity, space-
time is thought to be curved by the presence of mass, much as the
space defined by the surface of a piece of paper can be curved by

bending the paper.

The general expression is written as;

sS=x"+y 4+ — (a)
For  simplicity,
we will sometimes use only the single spatial coordinate x. If we

. . . 2
consider two events, we can determine the quantity As” where;

At = Ax® - AP

between the two events, and we find that it is invariant in any
inertial frame. The quantity As is known as the space-time interval
between two events. There are three possibilities for the invariant

quantity As’.



1. As® = 0 .: In this case Ax’ = ¢’At’ , and the two events can be
connected only by a light signal. The events are said to have a light-

like separation.

2. As’ >0: Here we must have Ax’ > ¢’At’ , and no signal can
travel fast enough to connect the two events. The events are not
causally connected and are said to have a space-like separation. In
this case we can always find an inertial frame traveling at a velocity
less than ¢ in which the two events can occur simultaneously in time

but at different places in space.

3. As® <0: Here we have Ax” < ¢’At® , and the two events can be
causally connected. The interval is said to be time-like. In this case
we can find an inertial frame traveling at a velocity less than c in
which the two events occur at the same position in space but at

different times. The two events can never occur simultaneously.
Four-vectors

In special Relativity, a four-vector (also known as a 4-vector) is an
object with four components, which transform in a specific way
under Lorentz Transformations. Specifically, a four-vector is an
element of a four-dimensional vector space considered as a

representation space of the representation of the Lorentz group.



In the literature of relativity, space-time coordinates and the
energy /momentum of a particle are often expressed in four-vector
form. They are defined so that the length of a four-vector is
invariant under a coordinate transformation. This invariance is
associated with physical ideas. The invariance of the space-time
four-vector is associated with the fact that the speed of light is a
constant. The invariance of the energy-momentum four-vector is
associated with the fact that the rest mass of a particle is invariant

under coordinate transformations.

The space-time 4-vector is defined by

oo

— X ct

N H
y r

The energy-momentum 4-vector is defined by

- E -

-y pP.c E

P = = |
| |pe
P:€ |




The scalar product of two space-time 4-vectors is defined by

- ct —> ct -> >
R,=|>| R,=|>| R;R,=ctct,—7,7,

a a
Fa T

Note that this differs from the ordinary scalar product of vectors
because of the minus sign. That minus sign is necessary for the

property of invariance of the length of the 4-vectors.
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