
UNIT I

Coordinate Systems:
(Cartesian Coordinate System)
The most common coordinate system
for representing positions in space is 
one based on three perpendicular s
patial axes generally designated x, y, 
and z. 
Any point P may be represented by 

three signed numbers, usually written

 (x, y, z) where the coordinate is the 

perpendicular distance from the plane
formed by the other two axes.

Often positions are specified by a position
vector r which can be expressed in terms of
the coordinate values and associated unit
vectors. 



Although the entire coordinate system can be rotated, the relationship 
between the axes is fixed in what is called a right-handed coordinate 
system.

For the display of some kinds of data,it may be convenient to have 
different scales for the different axes, but for the purpose of mathe-
matical operations with the coordinates, it is necessary for the axes to 
have the same scales. The term "Cartesian coordinates" is used to 
describe such systems, and the values of the three coordinates 
unambiguously locate a point in space. In such a coordinate system you 
can calculate the distance between two points and perform operations 
like axis rotations without altering this value. 

The distance between any two points in rectangular coordinates can be 
found from the distance relationship. In case of Cartesian Coordinate 
systems it is given as:

The distance between two points 

is given by 

















Inertial and Non-Inertial Reference Frame:

A frame of reference in which Newton's laws hold is called an inertial frame of 
reference. Any frame which is at rest or is moving with constant velocity with 
respect to inertial frame is also an inertial frame of reference.
  Frame of reference in which Newton's law dose not hold is called non-inertial 
frame of reference. An accelerated frame of reference is an example of non-
inertial frame of reference.
       
    Rotating Frames:
 In this section we will discuss what Newton’s equations of motion look like in
non-inertial frames. Just as there are many ways that an animal can  not be a
dog, so there are many ways in which a reference frame can be non-inertial.
Here we will just consider one type: reference frames that rotate
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            UNIT II

Inverse Force fields
Inverse-square law is a physical law implying that a specified physical
quantity or intensity shows inverse proportionality to the square of the
distance  from the  source  of  that  physical  quantity.  The  fundamental
cause for this can be understood as geometric dilution corresponding to
point-source  radiation  into  three-dimensional  space.  This  comes  from
strictly geometrical considerations. The intensity of the influence at any
given radius r is the source strength divided by the area of the sphere.
Being strictly geometric in its origin, the inverse square law applies to
diverse  phenomena.  Point  sources of  gravitational  force,  electric  field,
light, sound or radiation obey the inverse square law. It is a subject of
continuing debate with a source such as a skunk on top of a flag pole;
will  it's  smell  drop  off  according  to  the  inverse square  law?
Mathematically formulated:

It can further be extended as

Or,

The divergence of a field(vector field) which is the resultant of radial
inverse-square law fields with respect to definite sources is everywhere
proportional to the strength of the local sources, and hence zero outside



sources. Newtons gravitational law follows an inverse-square law, like the
effects of electric, light, magnetic, sound, and radiation phenomena.

Equation of Orbit
the motion of the particle must occur in a plane, which we take as the
xy plane, and the center of force is taken as the origin. In Fig. we show
the xy plane, as well as the polar coordinate system in the plane.

Fig(1):Polar coordinate system of a particle moving in the xy plane.
Since the vectorial nature of the central force is expressed in terms of a
radial vector from the origin it is most natural (though not required!) to
write the equations of motion in polar coordinates. In earlier lectures
we  derived  the  expression  for  the  acceleration of  a  particle  in  polar
coordinates

         (1)    

Then, using Newton’s second law, and the mathematical form f
or the central force given as,

                              
                      ( 2)



we have:

These are the basic equations of motion for a particle in a central force
field. From these we get,

                               (6)

This constant of the motion will allow you to determine the θ
component of motion, provided you know the r component of motion.
However, (4) and (5) are coupled (nonlinear) equations for the r and
 components of the motion. How could you solve them without solvingθ

for both the r and  components? This is where alternative forms of theθ
equations of motion are useful. Let us rewrite (8) in the following form
(by dividing through by the mass m):
Let us rewrite (4) in the following form (by dividing through
by the mass m):

                          (7)

Now, using (6), (7) can be written entirely in terms of r:
                            (8)

We can use (8) to solve for r(t), and the use (6) to solve for (t).θ
Equation  (8)  is  a  nonlinear  equation.  There  is  a  useful  change  of
variables, which for certain important central forces, turns the equation



into a linear differential equation with constant coefficients, and these
can  always  be  solved  analytically.  Here  we  describe  this  coordinate
transformation.
Let

This is part of the coordinate transformation. We will also use
 as a new “time” variable. Coordinate transformation are effected byθ

the  chain  rule,  since  this  allows  us  to  express  derivatives  of  “old”
coordinates in terms of the “new” coordinates. We have:

         (9)

And

       (10)

where, in both expressions, we have used the relation
 r22θ.=h at strategic points.
Now

                          (11)

Substituting this relation, along with (10) into (4), gives

 
        

         (12)



Now if        
 where K is some constant (12)becomes a linear,  constant coefficient
equation
Exact solution for the orbit equation for an inverse square law
force
Consider  now  the  orbit  equation  for  u( )  for  the  attractive  inverseθ
square law force, Fr(r)=−k/r2, namely

              (13)

In Newtonian gravity k=GMm so the r.h.s becomes GM/h2.
We  recognise  that  above  equation  is  just  the  equation  of  a  simple
harmonic oscillator with frequency = 1. The general solution is:ω

                 (14)

Let us now determine A and B for specific initial conditions (yet the
conclusions we shall draw concerning the possible orbit solutions remain
general).  Consider a case where a particle of  mass m is projected at
distance a from the centre of the force with velocity v, in a direction
perpendicular  to  the  radius  vector  from the  centre  to  the  projection
point. Without loss of generality we define  = 0 to correspond to timeθ
t= 0. We then have, at t= 0, tangent velocity vθ =aθ.=v while the radial
velocity vanishes, vr  = 0. The tangent motion simply fixes the angular
momentum: according to (9) h=r2θ.=avθ=av. Using the initial condition
for the radial velocity together with (9) we have:

                      (15)

This should be compared to the derivative of u according to our solution
(14)



                   (16)

leading to the conclusion that B= 0. Finally the initial condition for the
position yields;

           

        (17)

We therefore get the following orbit solution

               
Or
               (18)

where we defined
                          
                      (19)

We  recognise  that  our  solution  for  the  orbit  (18)  describes  a  conic
section where r measures the distance from the focal point to the orbit
(the centre of the force is at the focal point). Depending on the value of
the eccentricity(a  dimensionless  parameter),  it  is  a  circle  (€= 0),  an
ellipse (0<€<1), a parabola (€= 1), or a hyperbola (€>1).

Fig(2): The three conic sections described by eq. (18), here shown for l=



3 and  €=0.61 (ellipse),  €=1(parabola) and  €=1.5 (hyperbola) .  Note
that in all cases the origin (r= 0) corresponds to the centre of force: this
is a focal point of these conic section

Kepler's Laws
The  motions  of  the  planets,  as  they  seemingly  wander  against  the
background of the stars, have been a puzzle since the dawn of history.
The "loop-the-loop" motion of Mars, shown in Fig(3). below, was parti-
cularly  baffling.  Johannes  Kepler  (I57I-1630),  after  a  lifetime  of
study,worked out the empirical laws that govern these motions. Tycho
Brahe (1546- 1601), the last of the great astronomers to make obser-
vations without the help of a telescope, compiled the extensive data 
from which Kepler was able to derive the three laws of planetary motion
that now bear Kepler's name. Later, Newton (1642-1727) showed that
his law of gravitation leads to Kepler's laws. 
In this section we discuss each of Kepler's three laws. Although here we 
apply the laws to planets orbiting the Sun, they hold equally well for
satellites, either natural or artiflcial, orbiting Earth or any other massive
central body. 
1. THE LAW OF ORBITS: All planets move in elliptical orbits. with
the Sun at one focus. Figure (3) shows a planet of mass m moving in
such an orbit around the Sun, whose mass is M.We assume that M * m,
so that the center of mass of the planet - Sun system is approximately at
the center of the Sun. The orbit in Fig. (3) is described by giving its
semi-major axis a and its eccentricity e, the latter defined so that ea ts
the distance from the center of the ellipse to either focus F or F'. An
eccentricity of zero corresponds to a circle, in which the two foci merge



to a single central point. The eccentricities of the planetary orbits are
not large; so if the orbits are drawn to scale, they look circular. The
eccentricity of the ellipse of Fig. (3), which has been exaggerated for
clarity, is 0.74.The eccentricity of Earth's orbit is only 0.0167 .

Fig  (3):A  planet  of  mass  m
moving  in  an  elliptical  orbit
around the  Sun.  The Sun,  of
mass  M,is  at  one  focus  F of
the ellipse. The other focus is
F',  which is  located in  empty
space. Each focus is a distance
ea from the 
ellipse's center, with e being the eccentricity of the ellipse The semima-
jor axis a of. the ellipse, the perihelion (nearest the Sun) distance Rp,
and the aphelion (farthest from the Sun) distance  Ra are also shown.

THE LAW OF AREAS: A line that connects a planet to the Sun
sweeps out equal areas in the plane of the planet's orbit in equal time
intervals;  that  is,  the  rate  dA/dt  at  which  it  sweeps  out  area  A is
constant. Qualitatively, this second law tells us that the planet will move
most slowly when it is farthest from the Sun and most rapidly when it is
nearest to the Sun. As it turns out, Kepler's second law is totally equi-
valent to the law of conservation of angular momentum. Let us prove it. 

Fig(4)  (a) In time Δt,the line r connecting the planet to the Sun moves
through an angle Δ , sweeping out an area ΔA (shaded) .(b) The linearθ



momentum  of the planet and the components of .
The area of the shaded wedge in Fig. (4)a closely approximates the area
swept out in time Δt by a line connecting the Sun and the planet, which
are separated by distance r. The area ΔA of the wedge is approximately
the area of a triangle with base rΔ   and height r. Since the area of aθ
triangle  is  one-half  of  the  base  times  the  height,   .  This
expression for ΔA becomes more exact as Δt (hence Δ ) ap- θ
proaches zero. The instantaneous rate at which area is being swept out is
then

                         (1)

in which  is the angular speed of the rotating line connecting Sun andω
planet. Figure(4)b shows the linear momentum   the planet, along with
the radial and perpendicular components of i. Also we know (L =rp  ),
the magnitude of the angular momentum  of the planet about the Sun
is given by the product of r and P  ,the component of  perpendicular
to r. Here, for a planet of mass m,

                          (2)

Where v = rω
Eliminating r2  between Eqs.(1) and (2) leads toω

                                       
                                      (3)

It dA/dt rs constant, as Kepler said it is, then Eq.(3) means that L must
also be constant-angular momentum is conserved. Kepler's second law is
indeed equivalent to the law of conservation of angular momentum.
 3. THE LAW O F PERIODS
The square of the periods is proportional to the c ube of the semimajor
axis of its orbit.
To see this, consider the circular orbit of Fig. (5), with radius r (the



radius of 
a circle is equivalent to the semimajor axis of an ellipse).

Fig(5)A planet of mass m moving around the Sun in a circular orbit 
of radius r.

 Applying Newton's second law (F = ma) to the orbiting planet in Fig.
(5) yields

Here  a  =  r2  =  ω  is  known  as  the  centripetal  acceleration.  T
represents the period of motion. Thus we obtain Kepler's third law as;

This is known as the law of periods. The quantity in parentheses is a
constant that depends only on the mass M of. The central body about
which the planet orbits. Above Equation  holds also for elliptical orbits,
provided we replace r with a, the semimajor axis of the ellipse.

Gravitational law and Field
Physicists like to study seemingly unrelated phenomena to show that a
relationship can be found if the phenomena are examined closely enough.
This search for unification has been going on for centuries. In 1665, the
23-year-old Isaac Newton made a basic contribution to physics when he



showed that the force that holds the Moon in its orbit is the same force
that makes an apple fall. We take this knowledge so much for granted
now that it is not easy for us to comprehend the ancient belief that the
motions of earthbound bodies and heavenly bodies were different in kind
and were governed by different laws. Newton concluded not only that
Earth attracts both apples and the Moon but also that every body in
the universe attracts every other body; this tendency of bodies to move
toward each other is called gravitation. Newton's conclusion takes a little
getting  used  to,  because  the  familiar  attraction  of  Earth  for  earth-
bound  bodies  is  so  great  that  it  overwhelms  the  attraction  that
earthbound bodies have for each other. For example, Earth attracts an
apple with a force magnitude of about 0.8 N. You also attract a nearby
apple  (and  it  attracts  you),  but  the  force  of  attraction  has  less
magnitude than the weight of a speck of dust. Newton proposed a force
law that we call Newton's law of gravitation: Every particle attracts any
other particle with a gravitational force of magnitude

Here m1 and m2 are the masses of the particles, r is the distance between
them, and G is the gravitational  constant,  with a value that is  now
known to be

In vector form we can write;

The  strength  of  the  gravitational  force  that  is,  how  strongly  two
particles with given masses at a given separation attract 
each other depends on the value of the gravitational constant G. If G by
some miracle-were suddenly multiplied by a factor of 10, you would be
crushed to the floor by Earth's attraction. If G were divided by this



factor, Earth's attraction would be so weak that you could jump over a
building.  Although  Newton's  law  of  gravitation  applies  strictly  to
particles, we can also apply it to real objects as long as the sizes of the
objects are small relative to the distance between them. The Moon and
Earth are far enough apart so that, to a good approximation, we can
treat them both as particles-but what about an apple and Earth? From
the point of view of the apple, the broad and level Earth, stretching out
to the horizon beneath the apple, certainly does not look like a particle.

A gravitational field is the force field that exists in the space around
every mass or group of masses. This field extends out in all directions,
but the magnitude of the gravitational force decreases as the distance
from the object increases.  It  is  measured in units  of  force per mass,
usually newtons per kilogram (N/kg). A gravitational field is a type of
force field and is analogous to electric and magnetic fields for electrically
charged particles and magnets, respectively. 

There are two ways of showing the gravitational field around an object:
with arrows and with field lines. Both of these are shown in the picture
below. Arrows show the magnitude and direction of the force at different
points in space. The longer the arrow, the greater the magnitude. Field
lines show the direction the force would act on an object placed at that
point in space. The magnitude of the field is represented by the spacing
of  the  lines.  The  closer  the  lines  are  to  each  other,  the  higher  the
magnitude. 

The  gravitational  field  varies  slightly  at  the  Earth's  surface.  For



example,  the field is slightly stronger than average over subterranean
lead deposits.

Field due to spherical shell

We imagine a hollow spherical shell of radius  a, surface density , and aσ
point  P at  a  distance  r  from the  centre  of  the  sphere.  Consider  an
elemental zone of thickness x. The mass of this element is 2 a  x. (Inδ π σ δ
case you doubt this, or you didn’t know, “the area of a zone on the
surface of a sphere is equal to the corresponding area projected on to the
circumscribing cylinder”.) The field due to this zone, in the direction PO
is 

Let’s express this all in terms of a single variable, . We are going toξ
have to express x and  in terms of . We have ,θ ξ

from which, 

Therefore the field at P due to the zone is

If P is an external point, in order to find the field due to the entire



spherical shell, we integrate from  = r−a to r+ a This results in ξ

But if P is an internal point, in order to find the field due to the entire
spherical shell, we integrate from  = a −r to a+ r, which results inξ
g=0. Thus we have the important result that the field at an external
point due to a hollow spherical shell is exactly the same as if all the
mass were concentrated at a point at the centre of the sphere, whereas
the field inside the sphere is zero. 

Potential due to spherical shell
Outside  the sphere, the field and the potential are just as if all the
mass were concentrated at a point in the centre. The potential, then, out
side the sphere, is just −GM/r. 
Inside the sphere, the field is zero and therefore the potential is uniform
and is equal to the potential at the surface, which is −GM/a. The reader
should draw a graph of the potential  as a function of distance from
centre of the sphere. There is a discontinuity in the slope of the potential
(and hence in the field) at the surface. 

Field due to solid Sphere
A solid sphere is just lots of hollow spheres nested together. Therefore,
the field at an external point is just the same as if all the mass were
concentrated at the centre, and the field at an internal point P is the
same is if all the mass interior to P, namely Mr, were concentrated at the
centre, the mass exterior to P not contributing at all to the field at P.
This is true not only for a sphere of uniform density, but of any sphere
in which the density depends only of the distance from the centre – i.e.,
any spherically symmetric distribution of matter. 
If the sphere is uniform, we have , so the field inside is



Thus, inside a uniform solid sphere, the field increases linearly from zero
at  the  centre  to  GM/a2 at  the  surface,  and thereafter  it  falls  off as
GM/r2. If a uniform hollow sphere has a narrow hole bored through it,
and a small particle of mass m is allowed to drop through the hole, the
particle will experience a force towards the centre of GMmr/a3, and will
consequently oscillate with period P given by 

P is  a  point  inside  the  bubble.  The
field at P is  equal to the field due to
the entire sphere minus the field due
to  the  missing  mass  of  the  bubble.
That is, it is 

That  is,  the
field at P is uniform (i.e. is independent of the position of P) and is
parallel to the line joining the centres of the two spheres. 

Potential due to solid Sphere
The potential  outside a solid sphere is
just  the  same as  if  all  the  mass  were
concentrated at  a  point  in  the  centre.
This  is  so,  even  if  the  density  is  not
uniform,  and  long  as  it  is  spherically
distributed.  We  are  going  to  find  the
potential at a point P inside a uniform
sphere of radius a, mass M, density ,ρ



at a distance r from the centre (r< a). We can do this in two parts.
First, there is the potential from that part of the sphere “below” P. This
is  -Gmr/r Where  is the mass within radius r. Now we need to
deal with the material “above” P. Consider a spherical shell of radii x,
x+ x. Its mass is δ

The potential from this shell is 

This is to be integrated from  x= 0 to a, and we must then add the
contribution from the material “below” P . The final result is 

Fig(5)  shows  the  potential  both  inside  and  outside  a  uniform  solid



sphere. The potential is in units of −GM/r, and distance is in units of
a, the radius of the sphere. 

Rigid Body motion

In classical mechanics a rigid body is usually considered as a continuous 
mass distribution, while in quantum mechanics a rigid body is usually 
thought of as a collection of point masses. For instance, in quantum 
mechanics molecules (consisting of the point masses: electrons and 
nuclei) are often seen as rigid bodies 

The general motion of a rigid body of mass m consists of a translation of
the center of mass with velocity Vcm and a rotation about the center of 
mass with all elements of the rigid body rotating with the same angular 
velocity ωcm. Figure(6) shows the center of mass of a thrown rigid rod 



follows a parabolic trajectory while the rod rotates about the center of 
mass.

Fig(6)The  center  of  mass  of  a  thrown  rigid  rod  follows  a  parabolic
trajectory while the rod rotates about the center of mass.

Rigid body rotation 

Consider a rigid body executing pure rotational motion (i.e., rotational 
motion which has no translational component). It is possible to define an
axis of rotation (which, for the sake of simplicity, is assumed to pass 
through the body)--this axis corresponds to the straight-line which is the
locus of all points inside the body which remain stationary as the body 
rotates. A general point located inside the body executes circular 
motion which is centred on the rotation axis, and orientated in the plane
perpendicular to this axis. In the following, we tacitly assume that the 
axis of rotation remains fixed. 



Figure above shows a typical rigidly rotating body. The axis of rotation 
is the line . A general point  lying within the body executes a 
circular orbit, centred on , in the plane perpendicular to . Let 
the line  be a radius of this orbit which links the axis of rotation to 

the instantaneous position of  at time . Obviously, this implies that
 is normal to . Suppose that at time  point  has moved to

, and the radius  has rotated through an angle . The 

instantaneous angular velocity of the body  is defined 

where  is the perpendicular distance from the axis of rotation to point
. Thus, in a rigidly rotating body, the rotation speed increases linearly 

with (perpendicular) distance from the axis of rotation. 
It is helpful to introduce the angular acceleration  of a rigidly 

rotating body: this quantity is defined as the time derivative of the 
angular velocity. Thus, 

where  is the angular coordinate of some arbitrarily chosen point 

reference within the body, measured with respect to the rotation axis. 



Note that angular velocities are conventionally measured in radians per 
second, whereas angular accelerations are measured in radians per 
second squared. 
For a body rotating with constant angular velocity, , the angular 

acceleration is zero, and the rotation angle  increases linearly with 

time: 

where . Likewise, for a body rotating with constant angular

acceleration, , the angular velocity increases linearly with time, so that

and the rotation angle satisfies 

Note that the rotation angle plays the role of displacement, angular 
velocity plays the role of (regular) velocity, and angular acceleration 
plays the role of (regular) acceleration. 





Moments of inertia of a body about a particular axis measure the distr-

ibution of the body’s mass about that axis. The smaller the inertia the 

more the mass is concentrated about the axis. Inertia values can be 

found either by measurement or by calculation. Calculations are based 

on direct integration or on the "body build-up" technique. In the body 

build-up technique, inertias of simple shapes are added to estimate the 

inertia of a composite shape.These values are transferred to axes through

the composite mass center using the Parallel Axes Theorem for Moments

of Inertia.



Products of inertia are found either by measurement or by calculation. 

Calculations arebased on direct integrationor on the "body build-up" 

technique. In the body build-up technique, products of inertia of simple 

shapes are added to estimate the products of inertia of a composite 

shape. The products of inertia of simple shapes (about their individual 

mass centers)are found in standard inertia tables. These values are 

transferred to axes through the composite mass center using the 

Parallel Axes Theorem for Products of Inertia

Euler Equations.

The Fundamental equation of a rotating body is

                             1

is only valid in an inertial frame. However, we have seen that  is most
simply expressed in a frame of reference whose axes are aligned along
the principal axes of rotation of the body. Such a frame of reference
rotates with the body, and is, therefore, non-inertial. Thus, it is helpful
to define two Cartesian coordinate systems, with the same origins. The
first, with coordinates  ,  ,  , is a fixed inertial frame--let us denote



this the fixed frame. The second, with coordinates , , , co-rotates

with the body in such a manner that the  -,  -,  and  -axes  are

always pointing along its principal axes of rotation--we shall refer to this
as the  body frame. Since the body frame co-rotates with the body, its
instantaneous angular velocity is the same as that of the body. Hence, it
follows from the analysis

                        2

Here,  is the time derivative in the fixed frame, and  the time

derivative  in  the  body  frame.  Combining  Equations  (1)  and  (2),  we
obtain 

                                 3

Now, in the body frame let  and . It

follows that , where ,  and 

are the principal  moments  of  inertia.  Hence,  in the body frame,  the
components of Equation (3) yield 

            4

where . Here, we have made use of the fact that the moments

of inertia of a rigid body are  constant in time in the co-rotating body
frame. The above equations are known as Euler's equations. 



Consider a rigid body which is constrained to rotate about a fixed axis

with  constant angular  velocity.  It  follows that  .

Hence, Euler's equations (4), reduce to 

                 5

These  equations  specify  the  components  of  the  steady  (in  the  body
frame) torque exerted on the body by the constraining supports.

Applications of Euler Equations
1 Torque-free motion of a symmetric rigid body



2 The Symmetric Top
The symmetric top is an object with  The typical figure below 
explains this; 

Euler equations become

So, in this case, we see that ω3 ,which is the spin about the symmetric 
axis, is a constant of motion. In contrast, the spins about the other two 
axes are time dependant and satisfy



is drawn in figure below; In an inertial frame, this precession of the spin 
looks like a wobble.

Fig:The precession of the spin: the direction of precession depends on 
whether the object is short and fat (I3> I1) or tall and skinny (I3 < I1)

Moment of Inertia Tensor.
Consider a rigid body rotating with fixed angular velocity  about an 
axis which passes through the origin--see Figure below. Let  be the 

position vector of the th mass element, whose mass is . We expect 

this position vector to precess about the axis of rotation (which is 
parallel to ) with angular velocity . It, therefore,  that 

As,   
Thus, the above equation specifies the velocity, , of each mass

element as the body rotates with fixed angular velocity  about an 
axis passing through the origin.



Fig: A rigid rotating body.
The total angular momentum of the body (about the origin) is written 

where use has been made of above Equation, and some standard vector 
identities. The above formula can be written as a matrix equation of the 
form 

Here,   is  called the  moment of  inertia about the  -axis,   the

moment of inertia about the -axis,   the  product of inertia,  

the  product of inertia, etc. The matrix of the  values is known as

the moment of inertia tensor. Note that each component of the moment
of  inertia  tensor  can be  written as  either  a  sum over  separate  mass
elements, or as an integral over infinitesimal mass elements



Prepared by:
Muzamil Ahmad Teli
Assistant Professor

Department of Physics
Government Degree College Boys Anantnag

                                    Thanks



UNIT III

Simple Harmonic Motion

When a body moves periodically in a straight line on either side of a

point, the motion of body is called the simple harmonic motion. Thus,

the simple harmonic motion is a special case of the periodic motion,

obviously, a simple harmonic motion is definitely a periodic motion, but

all the periodic motions are not the simple harmonic motions.

For example, the motion of earth around the sun is a periodic motion,

but it is not the simple harmonic motion. On the other hand, the motion

of a simple pendulum is simple harmonic motion as well as the periodic.

In a simple harmonic motion, the body moves periodically in a straight

line  on  either  side  of  its  an  position  such  that  its  acceleration  is

proportional  to  the  displacement of  the particle  and the direction of

acceleration is always towards the mean position. In other words, the

motion of a body under a restoring force is a simple harmonic motion.

Restoring Force

The force, which is directly proportional to the displacement of the body

from its  mean position and is  directed towards  the mean position is

called the restoring force i.e., the restoring force tends to bring the body

back to its mean position.



Conditions or Characteristics of Simple Harmonic Motion

Following  are  the  conditions  (or  characteristics)  of  simple  harmonic

motion:

(i)The motion must be in straight line on either side of a definite point

(mean position).

(ii)The moving body must pass from its mean position repeatedly after a

definite time i.e., motion must be periodic.

(iii) The acceleration of the moving body must always be proportional to

the displacement of the body from its mean position and the direction of

acceleration must always be towards the mean position, i.e.Acceleration

 displacement and in the direction opposite to displacement.α

If at any instant, the displacement of body from its mean position is x,

the acceleration of the body is

But by Newton’s law of motion, force = mass x acceleration

Thus,  the  force  acting  on  the  body  must  be  proportional  to  the

displacement of the body from its mean position and its direction must

be  towards  the  mean position  (i.e.,  the  force  must  be  the  restoring

force).

A system, whose motion is simple  harmonic,  is  known as the simple

harmonic oscillator.



For example, motion of simple pendulum for small amplitude, motion of

the compound pendulum, motion of the mass attached at the free end of

a spring rigidly fixed at its other end, motion of torsional pendulum etc.

Harmonic Oscillator

A system executing simple harmonic motion is called a simple harmonic

oscillator. In simple harmonic motion, the force acting on the system at

any instant, is directly proportional to the displacement from a fixed

point in its path and the direction of this force is towards that fixed

point.  Thus, the system executes the motion under a linear restoring

force. If the displacement of the system from a fixed point is x, the linear

restoring force is -Kx, where K is a constant which is called the force

constant. Thus no other force except the linear restoring force acts on a

simple harmonic oscillator. As a result, the oscillator executes vibrations

of constant amplitude and with a constant frequency. These oscillations

are called the free oscillations.

Let a particle of mass m be executing simple harmonic oscillations. The

acceleration of the particle at displacement x from a fixed point will be

d2x/ dt2 . For the particle, 

where K is a constant, which is called force constant of the particle. Here

the negative sign tells that the direction of force acting on the particle

(or acceleration) is opposite to the direction of increase in displacement.



See figure below

Acce1eration of the particle        

             Let                then,

Acceleration of the particle                             1

Equation  (1)  is  known  as  differential  equation  of  simple  harmonic

oscillator.

Solution of Differential Equation of Simple Harmonic Oscillator

Now we have to find the displacement x of the particle at any instant t
by solving the differential equation (1) of the simple harmonic oscillator.

In equation (1), multiplying by 2( dx/dt),we get

At the position of maximum displacement, i. e., at x =±a, ve1ocity of

particle  dx/dt = 0



           

Then    

Hence   

or velocity of the particle                         2

Equation (2) tells us the velocity of particle at position x

From equation (2)   

Again integrating,                         

                          3

Here a is the amplitude of oscillations and  is the initial phase of theφ

motion  of  particle  (whose  value  can  be  known  from  the  initial
conditions).

(i) If x = 0 at t = 0 (i.e. the particle_ initiates its oscillations from its
mean position), then sin  = 0 or  = 0, then the displacement equationφ φ

of the particle executing simple harmonic motion at any time t will be

x =a sin ωt

(ii) If x = 0 at t = 0 (i.e. , the particle initiates its oscillations from its
maximum displaced position),  then sin  = 0 or   =  φ φ ,  then the
displacement equation of the particle executing simple harmonic motion
at any instant t will be

         4

Time Period and Frequency

It is clear from equations (4) and (5), that



     and       

It is concluded from here that the displacement of the particle at any

instant ( t + 2 /π ω) is exactly the same as it was at the instant t i.e.,

the particle comes back to its initial position during its motion exactly

after  time  it  .  Hence  time  period  of  the  particle  executing  simple

harmonic motion is

It is clear from equation (1) that numerically, 

acceleration = 

and time period  

Since frequency , hence frequency 

Remember  that  the  quantity    is  known  as  the  angular
frequency of motion .

Damped harmonic oscillator

In a simple harmonic oscillator, no other force except the linear restoring

force  acts.  As  a  result,  the  oscillator  executes  vibrations  of  constant

amplitude and with a constant frequency these oscillations are called the

free  oscillations.  The  total  mechanical  energy  (i.e.,  kinetic  energy  +



potential  energy)  of  the  oscillator  always  remains  conserved  in  such

oscillations.

But in practice, free oscillations are not possible. This is because the

medium in which the oscillator executes vibrations, exerts a frictional or

viscous force on the oscillator. This force is called the damping force.

This force acts in direction opposite to the direction of motion due to

which the amplitude of vibration gradually decreases. Hence, the energy

of oscillator also decreases. Such a vibrating system is called damped

harmonic  oscillator.  For  example,  the  simple  pendulum  executing

oscillations  in  air  or  in  any  other  medium,  tuning  fork,  ballistic

galvanometer are the damped harmonic oscillators.

Thus, a particle executing damped harmonic motion in a medium (i.e.,

damped harmonic oscillator) is acted upon by two forces: 

(i)  Restoring force which is directly proportional  to the displacement
from a fixed point  on its  path and is in a direction opposite to the
displacement,  i.e.,  -Kx  where  K  is  force  constant  and  x  is  the
displacement, is the displacement of the particle at any instant.

(ii) Damping force, which is proportional to the velocity of the particle
and is in a direction opposite to motion, i.e., =r[dx/dt] , where r is a
positive constant, which is called the damping coefficient.

If m is the mass of the particle, by Newton’s law, the total force acting

on the particle= md2x/dt2 where d2x/dt2 acceleration of the particle.

Thus the equation of motion of a damped harmonic oscillator will be



                 1

  

It must be noted that unit of damping coefficient r is kg/ sec. Therefore,

the unit of r/ m or 2b) is s-1. Thus the unit of m/r is same as that of the
time. Hence the quantity m/r (or l/2b) is called the time constant or the
relaxation time. It is represented by t (Tau). Relaxation time is defined
as the time in which the energy of particle reduces to 0.37 times its
maximum initial energy.

Now, we are to find the solution of equation (1) for damped motion. Let

the solution of equation (1) be x = Aeat

                                2

Substituting these values in equation (1)

                   3

Thus the two possible solutions of equation (1) are

x = A1 e
( -b + p)t and x = A2 e

(-b-p) t                

The general solution of equation (1) is

x = A1 e
(-b + p) t + A2e

(-b- p) t                                                4



=e-bt [ A1 ePt + A2e-Pt]                                                5

Here, A1  and A2  are the constants whose values can be obtained from

the initial condition of motion. There are following three cases possible:

1. When b < n, under damped.

2. When b > n, over damped.

3. When b = n, critically damped.

Case 1. Under-damped Case: If the damping is so small that b <<n
or r /2m<< √ K/m, then, p = √(b2- n2) = √- (n2 – b2) = i√(n2- b2) or p
= jw, where w = √(n2- b2). And i2 =-1

Obviously, p is an imaginary quantity, but w is a real quantity.

Then from equation (2)  

       6

Since x is a real quantity, therefore (A1+A2)  and i(A1-A2)  must also be

real  quantities. But A1 and A2 are the complex quantities, therefore

(A1+A2) = a0sin  and φ i(A1 – A2) = a0cos  in above .equation (3)φ

x =  -bt [ a0 sin  cos wt + aφ 0 cos  sin wt] φ

x =ao e
-bt sin (wt+ )                                                   7φ

This  expression  represents  the  damped  harmonic  motion  where
amplitude decreases exponentially with time. Hence, it is not a simple
harmonic  motion  but  it  is  an  oscillatory  motion,  whose  angular
frequency is



                      8

The amplitude of motion is a = a0e
-bt = a0e

-1/2T

The displacement-time graph for the damped harmonic oscillations is
shown  in  Figure  below.  It  is  evident  that  the  amplitude  of  motion
decreases exponentially.

FIGURE: Displacement-time graph for the damped harmonic oscillations

Case 2. Over-damped Case: If the damping is too large that b > n,
then p = √(b2- n2) is a real quantity and p <b.

Then from equation ( 4)  x=a1e
–(b-p)t+a2e

-(b+p)t                       9

Since,  p < b,  hence’  both the  quantities  on RHS of  above  equation
decrease exponentially  with time and there will  no oscillations  (  See
Figure below).



Such a motion is called the dead beat or a periodic motion. This type of
motion is used in the dead beat galvanometer.

Case 3. Critically Damped Case: If b = n, then p = 0

From equation (4)                 

    x = (A1 + A2) e
-bt = C e-bt,                                                   10

Where A1+A2 =c (a contant)

Since, there is only one constant in above equation, therefore it cannot
be the solution of second order differential equation (1)

Now if we consider that √(b2 – n2) =p a very small quantity, then

x = e-bt [ A1 e
Pt + A2 e

-pt] 

= e-bt [A1 (1 + pt + … ) + A2 (1- pt + … )] 

Since, p is very small, therefore neglecting the terms p2 and p3, …

x = e-bt [(A1+A2)  + p (A1 - A2)t] = e-bt [P + Qt]                        11

where, A1 + A2 = P and p[A1 + A2] = Q

If initially at t= 0, the displacement of particle is x= x0



and velocity v = dx/dt= V0 ’ then at t = 0, x0 = P and from

 dx/ dt = Qe-bt – be-bt (P + Qt) at t = 0,  V0 = Q- bP.

Hence, Q = v0 + bx0

Then, x = [x0 + (v0 + bxo) t] e
-bt                                   12

In the above expression, due to the coefficient [x0 + (v0 + bx0)t], first

the value of x increases with increase in t, but later on the exponential
term e-bt becomes more pronounced due to which the value of x falls to
zero in a small time interval and no oscillations occur.

 Power Dissipation in Damped Harmonic Oscillator

We have read that in damped oscillations, the mechanical energy of the
particle continuously decreases due to the damping forces. As a result,
the amplitude of motion also decreases with time. The displacement of
particle executing damped harmonic motion at any instant tis



x =a0e
-bt sin (wt+ ) from educationφ

Velocity of the particle V= dx/dt 

= a0e
-bt [(-b) sin (wt+ ) + w cos (wt + )] φ φ

If m is the mass of the particle, the kinetic energy of the particle is

          13

And potential energy

                     14

Average total energy of oscillator in a periodic time = Average kinetic
energy + Average potential energy

Now, to evaluate the average kinetic energy and the average potential
energy  in  one  time  period,  we  can  assume  that  the  amplitude  of
oscillation remains nearly unchanged i.e.,

e-2bt remains nearly constant. Since the average value of sin2 (wt+ )andφ

cos2 (wt + )is 1/2 for one time period and average value of φ

sin (wt + )cos (wt + ) is zero over one time period, therefore in aφ φ

period of time.

Average Kinetic energy  =

                           15



And the average potential energy 

                                    16

Hence, the average total energy in one periodic time

                                  17

It is clear from above equation  that the average energy of system in
damped  oscillations  decreases  exponentially  with  time  as  shown  in
Figure below.

The rate of loss of energy or the average power loss at any instant

Clearly, the rate of loss of energy at any instant depends average energy
with time in damped oscillator on the damping of the system (more the
value of b, more is the rate of loss in energy).

This loss in energy generally appears in the form of heat energy of the



oscillating system.

Quality Factor of Damped Harmonic Oscillator

The  quality  factor  of  an  oscillator  expresses  its  efficiency.  It  is
represented  by  the  letter  Q.  Since  there  is  no  energy  loss  in  free
oscillations of an ideal oscillator, its efficiency is maximum.

Definition: The quality factor of an oscillator is defined as the product
of 2  with the ratio of the average energy stored in the oscillator at anyπ

instant to the loss in energy in one periodic time.

i.e, Quality factor

 Q =2  * energy stored at any instant / energy lost in one secondπ

But from equation (17)

 

Thus,  quality  factor  is  a  dimensionless  quantity.  More  the relaxation
time of an oscillator, more is its quality factor

Driven Harmonic Oscillator

When an external periodic force is applied on a system, the force 

imports a periodic pulse to the system so that the loss in energy in doing

work against the dissipative forces is recovered.

As a result, the system is continuously oscillates. In the initial stages, 

the system tends to execute oscillations with the natural frequency (or 

frequency of free vibrations), while the impressed periodic force tries to 



impose its own frequency on it. Therefore, the free vibrations of the 

body soon die out and ultimately, the system starts oscillating with a 

constant amplitude and with the frequency equal to that of the 

impressed force. This is called the steady state of an oscillator. These 

vibrations are called the forced vibrations. The force impressed on the 

system is called the driver and the system which executes forced vibr-

ations, is called the forced or driven harmonic oscillator.

Thus a particle executing the forced harmonic oscillations is acted upon 
by the following three forces:

(i) A linear restoring force(= – Kx), which is directly proportional to 
the displacement from a fixed point and is in a direction opposite to the 
displacement.

(ii) A damping force ( =- r dx/dt),which is directly proportional to the 
velocity and is in direction opposite to the motion.

An external periodic force(F=F0 sin t)where F0 is the amplitude of ω

the impressed force and w  is the angular frequency of the impressed 
force.

If m be the mass of particle executing forced oscillations and d2x /dt2: is
its acceleration at dt any instant, then by Newton’s law.

Total force acting on the particle = md 2x/dt2

The equation of motion of forced harmonic oscillations will be



           

                      1       

where, r/m = 2b, K/m= n2 and F0/m = f

Obviously from equation (1), the differential equation for the free 
oscillations of the system will be d2x +n2x = 0, 

where n = √K/m =angular frequency of free oscillations.

Transient and Steady States

We have read that on applying an external periodic force, initially the 

system tends to oscillate with an angular frequency w1 = √(n2-b2) due to

damping, but the driving force of angular frequency w acting on the 
system forces it to oscillate with its own frequency. In this way, the 
actual motion of system is obtained by the superposition of two 

oscillations, whose angular frequencies are w1 = √(n2-b2) and w2 = w 

respectively. Hence if w  n, the solution of the equation (1) can be ≠

written as follows

x = x1 + x2

where, x1 is the solution of equation (1), when the external force is zero. 
Then from equation (1)



        2

             3

Remember that in the complete solution x = x1 + x2, x1  is known as the 
complementary function and  x2 is known as the particular integral.

The complementary function represented by equation (2) decreases expo-
nentially with time and after some time, this term vanishes, hence it is 
also known as the transient solution of the forced harmonic oscillator. In
this way, the system in transient state, oscillates with a frequency diffe-
rent from the natural frequency or the frequency of the driving force.

After a long time, when t >> t, the natural oscillations of the system 
vanishes due to damping and then the system oscillates with the 
frequency of the driving force. This state of the system is known as the 
steady state.

Let the solution of equation (2) in the steady state be x2 = A sin (wt- ).θ

[Since in the steady state, the amplitude of forced oscillation is constant 
(=A, say) and the frequency is equal to the frequency of impressed force
i.e., /2 . Here  is the phase difference between the displacement and ω π θ

the impressed force.Then

dx2/dt = A  cos (  t- ) and  dω ω θ 2x2/dt2 = -Aω2 sin (  t- )ω θ

Substituting these values in equation (3)

-Aω2 – sin( t- )+2bAwcos( t- ) + nω θ ω θ 2Asin( t- ) = fsin( t- + )ω θ ω θ θ

or 

A(n2-w2)sin(  t- )+2bAwcos( t- )=f[sin(  t- )cos +cos( t- )sin ]ω θ ω θ ω θ θ ω θ θ



Since this equation is valid for all value of t, therefore by equating the 
coefficients of sin(  t- ) ω θ and cos(  t- ) ω θ separately, we get

A(n2-w2) = fcos  and 2bAθ ω = fsin θ

Squaring and adding the above equations 

A2[(n2-w2)2 + 4b2 ω2 ] = f2[cos2 + sinθ 2 ]θ

                                       4

    

Putting these values of A and  in xθ 2 =Asin (  t- ), the solution of ω θ

equation (3) is

Substituting the values of x1 and x2; the complete solution of differential

equation (1) of forced oscillator is given as

            5

In the above equation, the first term on the RHS which is transient part,
decreases with time and finally its role vanishes. The time upto which it 
plays its role, depends on the amount of damping. More damping, more 



rapidly this term decreases to zero.

When the damping is zero (i.e., when b = 0), in steady state 

          x = f /(n2-w2) sin wt                                        6

and  = 0° (i.e., the driving force and displacement will be in same θ

phase). It is concluded that the phase difference between the displac-
ement and driving force of a forced oscillator is due to damping. It is 
also clear that when w = n, the amplitude of oscillations become infinite.
This condition is known as Resonance.

Figure below represents the variation of the transient displacement xl 

steady displacement x2 and their sum, i.e., total displacement x with 

time t of a forced oscillator for low damping.

(a) Variation of transient displacement x1 with time

(b) Variation of steady displacement x2 with time



(c) Variation of total displacement x with time

FIGURE: Variation of displacement of a forced oscillator with time

Above equation  gives the displacement of the forced oscillator at any 
instant t. It is clear that the amplitude of the driven oscillator in steady 
state does not depend on time t (i.e., it remains constant with time), but
it depends on the frequency roof the external periodic force.

Now we will study the following three cases:

(i) When << n, i.e., the frequency of the driving force is much less.ω

(ii) When  = n, i.e., the state of resonance.ω

(iii) When  > n, i.e., the frequency of the driving force is much high.ω

Case (i) When  << n, i.e., the driving frequency is less than the ω

natural frequency of the driven. For low damping (when b = 0), from 
equation (4) and equation (5)

 tan  = 0 or e = ∞                                                  7                 θ

Thus in this case, the displacement is in phase with the driving force 
and the amplitude of oscillations does not depend on the mass and 
damping, but only depends on the force constant.

Case (ii). When  = n, i.e., the frequency of driver is equal to the ω

natural frequency of the driven. Then from equation (4)



                        8     

Since t = 1/2b and  = n ] ω

This is called the state of resonance. Thus at resonance, the amplitude of
oscillation depends on the damping coefficient r. Low the damping, more
is the amplitude. If damping is zero (i.e., r = 0 or ‘t = ∞), 

Amax = ∞(infinite)

From, equation (4) tan  = ∞ or = / 2θ θ π

i.e., at resonance, the displacement of the oscillator lags behind the 
driving force in phase by / 2. Remember that the amplitude π

represented by equation (8) is not maximum. The reason behind it is as 
follows:

From,        

it is clear that for A to be maximum, the value of the term

must be minimum. i.e.,

8b2  + 2(ω n2-ω2)2 (- 2 ω) = 0

ω2 = n2 – 2b2 = ω2
r(Say)



Thus, at a particular frequency of the driver, the amplitude of oscillator 
becomes maximum. This phenomenon is called the amplitude resonance 
and this particular frequency is called the resonance frequency. The 
resonant frequency of forced harmonic oscillator

If damping is zero (i.e., b = 0), than ω, = n (i.e., the resonant angular 
frequency of the oscillator is equal to the natural angular frequency of 
the driven) and maximum amplitude Amax =infinite. Figure 1.15 shows 
the resonant amplitude of different case.When an external periodic force 
is applied on a system, the force imports a periodic pulse to the system 
so that the loss in energy in doing work against the dissipative forces is 
recovered

 

FIGURE:Variation of phase difference with frequency in steady state



Anharmonic Oscillator

In classical cases, anharmonicity is the deviation of a system from being 
a hormonic oscillator. An oscillator that is not oscillating in S.H.M is 
known as an anharmonic oscillator where the system can be 
approximated to a harmonic oscillator and the anharmonicity can be 
calculated using perturbation. If the anharmonicity is large, then it 
involves higher physics.

As a result, oscillations with frequencies  2  ω and 3ω etc., where  is the 
 ω fundamental frequency of the oscillator, appear. Furthermore, the 

frequency ω0 deviates from the frequency ω of the harmonic oscillations.
As a first approximation, the frequency shift Δ  = - ω ω ω0 is 
proportional to the square of the oscillation amplitude A

 

In a system of oscillators with natural frequencies   ,  ... 
anharmonicity results in additional oscillations with frequencies .

Lissajous figures

Lissajous Figures were first described in 1815 by Nathaniel Bowditch 
(1773-1838), who is best known today for his book, "The New American 
Practical Navigator", still available today. He also wrote widely on 
mathematics and astronomy, while pursuing a career as a navigator, 
surveyor, actuary and insurance company president, as well as being a 
member of the Corporation of Harvard College. 

A Lissajous figure is produced by taking two sine waves and displaying 



them at right angles to each other. This is easily done on an oscilloscope
in XY mode.  Let's explain the phenomenon by taking  two sine waves 
have equal amplitudes. 

Case(I):When the two sine waves 

are of equal frequency and in-phase, 

we get a diagonal line to the right . 

Case(II):When the two sine waves

 are of equal frequency and 180 

degrees out-of-phase we get a 

diagonal line to the left. 

Case(III):When the two sine waves

 are of equal frequency and 90 

degrees out-of-phase we get a 

circle. This can be easily shown,

X = sin(a) and Y = sin(a + 90) = cos(a) 

X*X + Y*Y = sin(a) * sin(a) + cos(a) * cos(a) = 1 

which is the parametric equation for a circle having a radius of 1.



Case(IV):If the two sine waves are

 in phase but the frequency of the 

horizontal sine wave is twice the 

frequency of the vertical sine 

wave we get the pattern shown here. 

Case(V): If the sine wave 90 degrees

 out-of-phase with the frequency of 

the horizontal sine wave three times

 the frequency of the vertical sine
wave. 
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UNIT IV

Newtonian Relativity 

Galileo and Newton described the motion of objects with respect to

a particular  reference frame, which is basically a coordinate system

attached to a particular observer. 

A  reference frame in which Newton’s Laws hold is called an 

inertial frame. It is a  frame that is not accelerating. Newtonian

Principle of Relativity (Galilean Invariance):

If Newton’s Laws hold in one inertial frame, they also hold in

a reference frame moving at a constant velocity relative to the first

frame. So the other frame is also an inertial frame. We can see this

if we make a Galilean transformation: 

Galilean Transformation 

Consider a reference frame S’ moving at a constant velocity with

respect to a frame S: 



x' = x+vt' x = x' - vt'

y = y' y' = y

z = z' z' = z

t = t' t' = t

These  transformation  equations  show  you  how  to  convert  a

coordinate  measured  in  one  reference  frame  to  the  equivalent

coordinate  in  the  other  reference  frame.  Implicit  in  a  Galilean

transformation is that time is universal (time runs at the same rate

in all frames). 

Now consider  the  action  of  a  force  in  one  reference  frame.  For

example, the force of gravity causes a dropped ball to accelerate: 

y component:

But Since y' = y (t” = t)

                   and         



x component:

      and        

Since  the  acceleration  of  the  ball  is  the  same  in  each  reference

frame, and thus the force acting on the ball,  Newton’s Laws are

valid in both frames. Each is an inertial frame. Note that since the

force  is  identical  in  each  frame,  there  is  noway to  detect  which

frame is  moving and which is  not.  You can only detect  relative

motion. For example, if a jet flies west at 1000 mph at the equator,

is the jet moving or is the Earth moving?

The jet flies over the surface of the Earth, but with respect to the

Sun the jet is not moving and the Earth is turning beneath it! The

fact that we cannot detect absolute motion is known as  Relativity.

It is only relative motion that matters. 

The Michelson-Morley Experiment 

The Earth orbits around the sun at a high orbital speed, about 10-

4c,  so an obvious experiment is  to try to find the effects of  the

Earth’s motion through the ether. Even though we don’t know how

fast the sun might be moving through the ether, the Earth’s orbital



velocity  changes  significantly  throughout  the  year  because  of  its

change  in  direction,  even  if  its  orbital  speed  is  nearly  constant.

Albert  Michelson  (1852–  1931)  performed  perhaps  the  most

significant American physics  experiment of  the 1800s.  Michelson,

who was the first U.S. citizen to receive the Nobel Prize in Physics

(1907), was an ingenious scientist who built an extremely precise

device called an interferometer, which measures the phase difference

between two light waves. Michelson used his interferometer to 

detect the difference in the speed of light passing through the ether

in different directions. 

An interferometer was used to separate a light beam into two paths

of possibly different length and then recombined. Since light is a

wave,  it  exhibits  the  phenomenon  of  interference  when  multiple

waves are combined. If  two light waves are completely in phase,

then the amplitude of each wave adds constructively . If they are

completely  out  of  phase,  the  amplitudes  subtract  destructively.

Interferometers  use  monochromatic  light  so  that  the  light  wave

consists of nearly a single wavelength. (Today we would use a laser).



Constructive interference               Destructive interference

       

The basic technique is shown in Figure below:

The Michelson-Morely interferometer has two paths at right angles

with respect to each other. It is at rest in a laboratory, presumably

traveling through the ether. Considering that the velocity of light is

c with respect to the ether, the distance light travels along each

path is different even if the length of each “arm” is the same. 

Although  the  experiment  was  sensitive  enough  to  detect  the

expected ether drift, to every body's surprise nothing like that was

found. The negative results gave two breath-taking results;



First,  ether does  not  exist  and so there is  nothing like  absolute

motion relative to ether. All motion is relative to a specified frame

of reference, not to a universal one

Second, the speed of light is same for all observers which is not true

for waves requiring material medium for their propagation.

Conclusion:  No shift was seen! Nor has one been seen ever since

1887. The conclusion must be that the ether does not exist. Light

does not require any medium to propagation.

Special Theory of Relativity

The theory of relativity deals with the lack of Universal frame of

reference.  Special  theory  published  by  Einstein  in  1905,  treats

problems that involves inertial frame of reference.

The theory can be explained under two postulates:

PI. The principle of relativity:

Laws of physics must be the same in all inertial reference frames.



Though  this  assertion  may  sound  nothing  new,  it  has  to  be

appreciated that, first of all, this is a postulate. Besides, the change

is in its privilege, now as an apriori assertion. The second postulate

brings  in  some fundamental  changes  in  our  notion  of  space  and

time. While the following sections in this chapter are devoted to a

more detailed discussion on these

aspects, we shall briefly define the bare minimum first, just enough

material to state the postulate. The special theory forces us to look

upon  space  and  time  not  independently,  but  as  a  space-time

continuum.  Just  as  we speak  of  a  point  in  3-space  given  by  3-

coordinates, we have Events(noun) designated by 4 coordinates - 3

spacial  and  1  temporal.  Thus  we  have  a  4-dimensional  space-

time,and every space-time point is defined as an ’Event’. For a start

it may be convenient to think of these Events as usual events(verb).

Consider two Events in space-time, say (t1;x1;y1;z1),i = 1,2 (say two

firecrackers bursting in the sky at two different points at different

times). Contrary to our usual notion that time intervals

t=  (t∆ 2−t1),  and  lengths  l∆ 2=  (x2−x1)2+(y2−y1)2+  (z2−z1)2,are

independently invariant in any reference frame, we have

PII. The space time interval between two Events, defined as

s∆ 2=c2 t∆ 2− l∆ 2,



is an invariant in any inertial reference frame, where c′ ′

is a universal constant whose value is roughly 3×108m/s I.e., if the

same two events are in another inertial reference frame designated

by the space-time coordinates (t′i;x′i, y′i, z′i), i= 1,2, then

c2( t2−t1)2−[( x2−x1)2+( y2−y1)2+( z2−z1)2] 

             =c2(t′2−t′1)2−[(x′2−x′1)2+(y′2−y′1)2+(z′2−z′1)2]

The speed of light happens to be c′ ′

Lorentz Transformations

As  we  switch  from  one  reference  frame  to  another,  the  simple

velocity addition rule does not hold. Therefore we have to find the

correct  relativistic  expression  for  adding  velocities,  the  relations

connecting space-time coordinates in two reference frames in relative

motion.  These  relations  are  labeled  as  Lorentz  transformation

relations.



The primed frame moves with velocity v in the x direction with

respect to the fixed reference frame. The reference frames coincide

at t=t'=0. The point x' is moving with the primed frame.

The relations are given as;

The inverse relations are given as;



Here we can use; 

Therefore  the  modified  form  ofLorentz equations are;



Relativity of simultaneity

The  relativity  of  simultaneity  is  the  concept  that  distant

simultaneity – whether two spatially separated events occur at the

same time – is not absolute, but depends on the observer's reference

frame . According to the special theory of relativity, it is impossible

to say in an  absolute sense that two distinct  events occur at the

same time if those events are separated in space. For example, a car

crash in London and another in New York, which appear to happen

at the same time to an observer on the earth, will appear to have

occurred at slightly different times to an observer on an airplane

flying between London and New York. The question of whether the

events are simultaneous is relative: in the stationary earth reference

frame the two accidents may happen at the same time but in other

frames (in a different state of  motion relative to the events) the

crash in London may occur first, and in still other frames the New

York crash may occur first.  However, if  the two events could be

causally connected (i.e. the time between event A and event B is

greater than the distance between them divided by the speed of

light), the order is preserved (i.e., "event A precedes event B") in all

frames of reference.

A mathematical form of the relativity of simultaneity ("local time")



was introduced by H. Lorentz in 1892, and physically interpreted

(to first order in v/c) as the result of a synchronization using light

signals by Henri Poincare in 1900.

Length Contraction

Now let’s consider what might happen to the length of objects in

relativity. Let an observer in each system K and K' have a meter

stick at rest in his or her own respective system. Each observer lays

the stick down along his or her respective x axis, putting the left

end at xl(or xl' ) and the right end at xr (or xr'). Thus, Frank in

system K measures his stick to be L0 = xr - xl . Similarly, in system

K', Mary measures her stick at rest to be L0' = xr' - xl'= L0 . Every

observer measures a meter stick at rest in his or her own system to

have the same length, namely one meter. The length as measured at

rest is called the proper length. 

Let system K be at rest and system K' move along the x axis with

speed v. Frank, who is at rest in system K, measures the length of

the stick moving in K'. The difficulty is to measure the ends of the

stick simultaneously. We insist that Frank measure the ends of the

stick at the same time so that t=tr= tl. The events denoted by (x, t)

are ( xl, t) and ( xr , t). We use find;



The meter stick is at rest in system K', so the length xr' - xl' must

be the proper length L0'. Denote the length measured by Frank as

L= xr - xl. The times tr and tl  are identical, as we insisted, so tr - tl

=0. Notice that the times of measurement 

by Mary in her system, tr'   and tl', are not identical. It makes no

difference when Mary makes the measurements in her own system,

because the stick is at rest. However, it makes a big difference when

Frank makes his measurements, because the stick is moving with

speed  v  with  respect  to  him.  The  measurements  must  be  done

simultaneously! With these results, the previous equation becomes

or because   L0 =  L0';



Notice that L0>L, so the moving meter stick shrinks according to

Frank. This effect is known as length or space contraction and is

characteristic of relative motion.

Time Dilation

Consider again our two systems K and K' with system K fixed and

system K' moving along the x axis  with velocity v as shown in

Figure below. Frank lights a sparkler at position x1 in system K. A

clock placed beside the sparkler indicates the time to be t1 when the

sparkler  is  lit  and t2 when the sparkler  goes  out .  The sparkler

burns for time T0 , where T0 = t2 - t1 . The time difference between

two events occurring at the same position in a system as measured

by a clock at rest in the system is called the proper time. We use

the subscript zero on the time difference T0 to denote the proper

time. Now what is the time as determined by Mary who is passing

by (but  at  rest  in  her  own system K')?  All  the  clocks  in  both

systems have been synchronized when the systems are at rest with

respect to one another. The two events (sparkler lit and then going

out) do not occur at the same place according to Mary. 

She is beside the sparkler when it is lit, but she has moved far away



 

from the sparkler when it goes out . Her friend Melinda, also at rest

in system K', is beside the sparkler when it goes out. Mary and

Melinda measure the two times for the sparkler to be lit and to go

out in system K' as times t1' andt1' . The Lorentz transformation

relates these times to those measured in system K as

In system K the clock is fixed at x1 , so x2 – x1= 0; that is, the two

events occur at the same position. The time  t2 - t1  is the proper

time T0  , and we denote the time differencet2' - t1' as measured in

the moving system K':

The pictorial representation of the different observation intervals are

given below.



Thus, the Time Dilation is given as;

Relativistic addition of velocities

If  the primed frame is traveling with speed  V in the positive  x-

direction  relative  to  the  unprimed  frame  then  Lorentz

transformations can be written as;

Where,



Divide dx, dy, dz by dt we get;

Or,

Thus in Cartesian coordinates the velocity transformation can be

written as;

Variation of Mass with Velocity

According to Newtonian mechanics the mass of a body does not

change with velocity. However, conservation laws, especially here the

law of  conservation  of  momentum,  hold  for  any  inertial  system.

Hence,  in  order  to  maintain  the  momentum  conserved  in  any



isolated system, mass of the body must be related to its velocity. So

according to Einstein, the mass of the body in motion is different

from the mass of the body at rest. We consider two inertial frames S

and S’ as in Figure below;

Fig: Collision between masses viewed from stationary and moving

frames of reference.

We now consider the collision of two bodies in S’ and view it from

the S. Let the two particles of masses m1 and m2 are travelling with

velocity u ‘ and-u ‘ parallel to x-axis in S’. The two bodies collide

and after collision they coalesced into one body.

In System S : Before Collision: Mass of bodies are m1 and m2•

Let the their velocities are u1 and u2 respectively.

In System S: After Collision:  Mass  of  the coalesced body is

(m1+ m2) and the velocity Is v .Using law of addition of velocities;



Applying the principle of conservation of momentum of the system

before and after the collision, we have,

m1 u1 +m2 u2 = (m1 +m2)v     

Now, using equations (1) and (2), we have

M1/m2 = [√ 1-(u2 /c)2 /√ 1-(u1 /c)2 ] 

Let the body of mass m2 is moving with zero velocity in S before

collision, i.e., u2 = 0,hence, using equation (3), we have,



m1 /m2 = 1 / √ 1-(u1/c)2

Using common notation as m1= m, m2 = m0 , u1 = v, we have by

using equation (4).

This is the relativistic formula for variation of mass with velocity,

where m  0 is the rest mass and m is the relativistic mass of the

body. There are a large numbers of experimental observations of

this enhancement of mass of particles in high energy physics

I. When v << c

v2 << c2, v 2/ c2 is negligible as compared to 1 => c m =m0

When velocity of the moving particle is much smaller as compared
to velocity of light, relativistic mass equals the rest mass.

II. When v= c

V2 =c2 ,v2 /c2 =1 => [1- v2 /c2 ] ,< 1 => m >m0

When velocity of the moving particle is comparable to velocity of

light, relativistic mass of the body appears to be greater than the

rest mass.

III. When v = c

V2 =c2 , v2 /c2 =1 => m



When velocity of the moving particle is exactly equal to velocity of

light, relativistic mass of the body appears to be infinite and this is

an impractical concept.

IV. When v > c

V2 > > c2 ,v2 /c2 > 0 m = Imaginary

When velocity  of  the  moving  particle  is  greater  as  compared to

velocity of light., relativistic mass becomes imaginary and this is an

impractical concept.

Mass Energy Relation

The E=mc2 relationship between mass  and energy was first made

explicit in a short piece by Einstein (“On the Origin of Inertia”)

which  was  written  as  a  postscript  to  the  famous  1905

“Electrodynamics” paper, and which presented the E=mc2 result as

a consequence of the mathematical relationships that had appeared

in the earlier piece. W. L.  Fadner has also unearthed and discussed

a number of contemporary pieces that either came close to deriving

E=mc2, or presented similar equations without fully exploring the

consequences or claiming the result to be general. 

Consider an object of rest mass m’. If force is applied to the object

such  that  it  starts  moving  with  relativistic  velocity  (that  is



comparable with the speed of light), then its mass will also vary

with variation of mass with energy relation

m = m’/(1-v2/c2)1/2                                                (1)

Now suppose that work dw will be done due to this force. If the

object is displaced along x axis, then work will be:

dw = Fdx

or dw = (dp/dt)dx (because from Newton’s 2nd law F = dp/dt)

or dw = [d(mv)/dt]dx (because p =mv)

Differentiate R.H.S.

dw = (mdv/dt + vdm/dt)dx (here m is also a variable quantity,

thus m is also differentiated)

or dw = mdvdx/dt + vdmdx/dt

or dw = mvdv + v2dm                                    (2)

Now square equation (1) and cross-multiply

m2 (1-v2/c2) =  m’2

or m2 [(c2-v2)/c2] =  m’2

or m2c2 – m2v2 = m’2c2



Differentiating, we get

c2(2mdm) – m2(2vdv) – v2(2mdm)

or v2dm + mvdv = c2dm                                  (3)

Comparing equations (2) and (3), we get

dw = c2dm                                                     (4)

The total amount of work done by the applied force in order to

change its velocity from 0 to v (or mass from m’ to m) is achieved

by integrating the L.H.S of the following equation with limits 0 to

W and R.H.S. from m’ to m (because when work is 0 then body has

rest mass m’ and when work W is done then body has variable mass

m).

dw = c∫ 2 dm∫

Or W = c2(m – m’)                                         (5)

As this work W is done to give motion to the object. Therefore, W

will appear in the form of kinetic energy acquired by the body, Thus

relativistic kinetic energy will be

K = = c2(m – m’)                                            (6)

By definition of potential energy or the rest mass energy, it is equal



to the internal energy of the body. It is also equal to the work done

to bring all the particles which make the object of rest mass m’.

Thus the rest mass energy of the body is derived as by integrating

the L.H.S of the following equation with limits 0 to W and R.H.S.

from 0 to m (because when work is 0 then body has rest mass does

not exist and when work W is done then all the particles make an

object of rest mass m’).

dw = c∫ 2 dm∫

Thus  W = m’c2

Therefore, W will appear in the form of rest mass energy of the

body, Thus rest mass energy will be

R = m’c2                                                  (7)

The total energy of the object will be

E = kinetic energy + rest mass energy

Put equations (6) and (7) in this equation, we get

E = c2(m – m’) + m’c2

Or E = mc2

This is the famous Einstein mass-energy equivalence relation.



Space-time four-dimensional continuum

A four-dimensional reference frame, consisting of three dimensions

in space and one dimension in time, used especially in Relativity

Theory as a basis for coordinate systems for identifying the location

and timing of objects and events. In  General Relativity, space-

time is thought to be curved by the presence of mass, much as the

space defined by the surface of a piece of paper can be curved by

bending the paper. 

The general expression is written as;

 

For  simplicity,

we will sometimes use only the single spatial coordinate x. If we

consider two events, we can determine the quantity Δs2 where;

between the two events,  and we find that it  is  invariant in  any

inertial frame. The quantity  Δs is known as the space-time interval

between two events. There are three possibilities for the invariant

quantity  Δs2. 



 1. Δs2 =  0؍ : In this case  Δx2 = c2Δt2 , and the two events can be

connected only by a light signal. The events are said to have a light-

like separation. 

2. Δs2 >0: Here we must have  Δx2 > c2Δt2 , and no signal can

travel fast enough to connect the two events. The events are not

causally connected and are said to have a space-like separation. In

this case we can always find an inertial frame traveling at a velocity

less than c in which the two events can occur simultaneously in time

but at different places in space. 

3. Δs2 <0: Here we have Δx2 < c2Δt2  , and the two events can be

causally connected. The interval is said to be time-like. In this case

we can find an inertial frame traveling at a velocity less than c in

which the two events occur at the same position in space but at

different times. The two events can never occur simultaneously.

Four-vectors

In special Relativity, a four-vector (also known as a 4-vector) is an

object  with  four  components,  which  transform in  a  specific  way

under  Lorentz  Transformations.  Specifically,  a  four-vector  is  an

element  of  a  four-dimensional  vector  space  considered  as  a

representation space of the representation of the Lorentz group.



In  the  literature  of  relativity,  space-time  coordinates  and  the

energy/momentum of a particle are often expressed in four-vector

form.  They  are  defined  so  that  the  length  of  a  four-vector  is

invariant  under  a  coordinate  transformation.  This  invariance  is

associated  with  physical  ideas.  The  invariance  of  the  space-time

four-vector is associated with the fact that the speed of light is a

constant.  The  invariance  of  the  energy-momentum four-vector  is

associated with the fact that the rest mass of a particle is invariant

under coordinate transformations. 

The space-time 4-vector is defined by

The energy-momentum 4-vector is defined by



The scalar product of two space-time 4-vectors is defined by

Note that this differs from the ordinary scalar product of vectors

because of  the minus sign.  That minus sign is  necessary for the

property of invariance of the length of the 4-vectors. 

Prepared by:
Muzamil Ahmad Teli
Assistant Professor

Department of Physics
Government Degree College Boys Anantnag

Thanks


	BSc.1st Semester Unit I.pdf (p.1-31)
	BSc.1st Semester UnitII.pdf (p.32-60)
	Rigid body rotation

	BSc.1st Semester Unit III.pdf (p.61-86)
	Simple Harmonic Motion

	BSc.1st Semester Unit IV.pdf (p.87-114)
	Relativity of simultaneity
	The relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame . According to the special theory of relativity, it is impossible to say in an absolute sense that two distinct  events occur at the same time if those events are separated in space. For example, a car crash in London and another in New York, which appear to happen at the same time to an observer on the earth
	Relativistic addition of velocities


