
DS Using C++ Page 1

Algorithms, performance analysis- time complexity and space complexity,

Searching: Linear and binary search methods.

Sorting: Bubble sort, selection sort, Insertion sort, Quick sort, Merge sort, Heap sort. Time complexities.

ALGORITHMS

Definition: An Algorithm is a method of representing the step-by-step procedure for
solving a problem. It is a method of finding the right answer to a problem or to a
different problem by breaking the problem into simple cases.

It must possess the following properties:

1. Finiteness: An algorithm should terminate in a finite number of steps.

2. Definiteness: Each step of the algorithm must be precisely (clearly) stated.

3. Effectiveness: Each step must be effective. i.e.; it should be easily

convertible into program statement and can be performed exactly in a finite

amount of time.

4. Generality: Algorithm should be complete in itself, so that it can be used to

solve all problems of given type for any input data.

5. Input/output: Each algorithm must take zero, one or more quantities as input

data and gives one of more output values.

An algorithm can be written in English like sentences or in any
standard representations. The algorithm written in English language is called Pseudo

code.

Example: To find the average of 3 numbers, the algorithm is as shown below.

Step1: Read the numbers a, b, c, and d.
Step2: Compute the sum of a, b, and c.
Step3: Divide the sum by 3.

Step4: Store the result in variable of d.
Step5: End the program.

Development Of An Algorithm

The steps involved in the development of an algorithm are as follows:

Specifying the problem statement.

Designing an algorithm.

Coding.
Debugging
Testing and Validating
Documentation and Maintenance.

Specifying the problem statement: The problem which has to be implemented in to a
program must be thoroughly understood before the program is written. Problem must be
analyzed to determine the input and output requirements of the program.

DS Using C++ Page 2

Designing an Algorithm: Once the problem is cleared then a solution method for solving

the problem has to be analyzed. There may be several methods available for obtaining the

required solution. The best suitable method is designing an Algorithm. To improve the

clarity and understandability of the program flowcharts are drawn using algorithms.

Coding: The actual program is written in the required programming language with the help
of information depicted in flowcharts and algorithms.

Debugging: There is a possibility of occurrence of errors in program. These errors must be

removed for proper working of programs. The process of checking the errors in the program

is known as ‗Debugging‘.

There are three types of errors in the program.

Syntactic Errors: They occur due to wrong usage of syntax for the statements.

Ex: x=a*%b

Here two operators are used in between two

operands. Runtime Errors : They are determined at the execution

time of the program

Ex: Divide by zero
Range out of bounds.

Logical Errors : They occur due to incorrect usage of instructions in the program. They are

neither displayed during compilation or execution nor cause any obstruction to the program
execution. They only cause incorrect outputs.

Testing and Validating: Once the program is written , it must be tested and then validated.

i.e., to check whether the program is producing correct results or not for different values of

input.

Documentation and Maintenance: Documentation is the process of collecting, organizing

and maintaining, in written the complete information of the program for future references.

Maintenance is the process of upgrading the program, according to the changing

requirements.

PERFORMANCE ANALYSIS

When several algorithms can be designed for the solution of a problem, there arises
the need to determine which among them is the best. The efficiency of a program or an
algorithm is measured by computing its time and/or space complexities.

The time complexity of an algorithm is a function of the running time of the
algorithm.
The space complexity is a function of the space required by it to run to completion.
The time complexity is therefore given in terms of frequency count.

Frequency count is basically a count denoting number of times a statement execution

Asymptotic Notations:

To choose the best algorithm, we need to check efficiency of each algorithm.
The efficiency can be measured by computing time complexity of each
algorithm. Asymptotic notation is a shorthand way to represent the time
complexity.
Using asymptotic notations we can give time complexity as ―fastest possible‖,

―slowest possible‖ or ―average time‖.
Various notations such as Ω, θ, O used are called asymptotic notions.

DS Using C++ Page 3

Big Oh Notation
Big Oh notation denoted by ‗O‘ is a method of representing the upper bound of

algorithm‘s running time. Using big oh notation we can give longest amount of time
taken by the algorithm to complete.

Definition:

Let, f(n) and g(n) are two non-negative functions. And if there exists an integer n0 and
constant C such that C > 0 and for all integers n > n0, f(n) ≤ c*g(n), then

f(n) = Og(n).

Various meanings associated with big-oh are

O(1) constant computing time
O(n) linear
O(n2) quadratic

O(n3) cubic
O(2n) exponential
O(logn) logarithmic

The relationship among these computing time is
O(1)< O(logn)< O(n)< O(nlogn)< O(n2)< O(2n)

Omega Notation:-

Omega notation denoted ‗Ω‘ is a method of representing the lower bound of
algorithm‘s running time. Using omega notation we can denote shortest amount of time
taken by algorithm to complete.

Definition:
Let, f(n) and g(n) are two non-negative functions. And if there exists an integer n0

and constant C such that C > 0 and for all integers n > n0, f(n) >c*g(n), then
f(n) = Ω g(n).

DS Using C++ Page 4

Theta Notation:-

Theta notation denoted as ‗θ‘ is a method of representing running time between
upper bound and lower bound.
Definition:

Let, f(n) and g(n) are two non-negative functions. There exists positive constants C1
and C2 such that C1 g(n) ≤ f(n) ≤ C2 g(n) and f(n) = θ g(n)

How to compute time complexity

1 Algorithm Message(n) 0

2 { 0

3 for i=1 to n do n+1

4 { 0
5 write(―Hello‖); n

6 } 0

7 } 0
 total frequency count 2n+1

While computing the time complexity we will neglect all the constants, hence ignoring 2

and 1 we will get n. Hence the time complexity becomes O(n).

f(n) = Og(n).

i.e f(n)=O(2n+1)

=O(n) // ignore constants

1 Algorithm add(A,B,m,n) 0

2 { 0

3 for i=1 to m do m+1

4 for j=1 to n do m(n+1)

5 C[i,j] = A[i,j]+B[i,j] mn

DS Using C++ Page 5

6 } 0
 total frequency count 2mn+2m+1

f(n) = Og(n).
=> O(2mn+2m+1)// when m=n;
= O(2n2+2n+1); By neglecting the constants,

we get the time complexity as O(n2).
The maximum degree of the polynomial has to be considered.

Best Case, Worst Case and Average Case Analysis
If an algorithm takes minimum amount of time to run to completion for a specific
set of input then it is called best case complexity.
If an algorithm takes maximum amount of time to run to completion for a specific
set of input then it is called worst case time complexity.

The time complexity that we get for certain set of inputs is as a average same.

Then for corresponding input such a time complexity is called average case time

complexity.

Space Complexity:The space complexity can be defined as amount of memory required
by an algorithm to run.

Let p be an algorithm,To compute the space complexity we use two factors: constant and
instance characteristics. The space requirement S(p) can be given as

S(p) = C + Sp
where C is a constant i.e.. fixed part and it denotes the space of inputs and outputs. This
space is an amount of space taken by instruction, variables and identifiers.

Sp is a space dependent upon instance characteristics. This is a variable part whose
space

requirement depend on particular problem instance.
Eg:1
Algorithm add(a,b,c)
{return a+b+c;

}
If we assume a, b, c occupy one word size then total size comes to be 3

S(p) = C

Eg:2
Algorithm add(x,n)

{

}

S(p) ≥ (n+3)

sum=0.0;
for i= 1 to n do
sum:=sum+x[i];

return sum;

The n space required for x[], one space for n, one for i, and one for sum

Searching: Searching is the technique of finding desired data items that has been stored

within some data structure. Data structures can include linked lists, arrays, search trees, hash

tables, or various other storage methods. The appropriate search algorithm often depends on

the data structure being searched.

Search algorithms can be classified based on their mechanism of searching. They are

Linear searching

Binary searching

DS Using C++ Page 6

Linear or Sequential searching: Linear Search is the most natural searching method and It

is very simple but very poor in performance at times .In this method, the searching begins

with searching every element of the list till the required record is found. The elements in the

list may be in any order. i.e. sorted or unsorted.

We begin search by comparing the first element of the list with the target element. If
it matches, the search ends and position of the element is returned. Otherwise, we will move
to next element and compare. In this way, the target element is compared with all the

elements until a match occurs. If the match do not occur and there are no more elements to
be compared, we conclude that target element is absent in the list by returning position as -
1.

For example consider the following list of elements.

55 95 75 85 11 25 65 45
Suppose we want to search for element 11(i.e. Target element = 11). We first

compare the target element with first element in list i.e. 55. Since both are not matching we
move on the next elements in the list and compare. Finally we will find the match after 5
comparisons at position 4 starting from position 0.

Linear search can be implemented in two ways.i)Non recursive ii)recursive

Algorithm for Linear search

Linear_Search (A[], N, val , pos)

Step 1 : Set pos = -1 and k = 0

Step 2 : Repeat while k < N

Begin
Step 3 : if A[k] = val

Set pos = k
print pos
Goto step 5

End while
Step 4 : print ―Value is not present‖
Step 5 : Exit

BINARY SEARCHING

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. Binary search looks for a particular

item by comparing the middle most item of the collection. If a match occurs, then the index

of item is returned. If the middle item is greater than the item, then the item is searched in

the sub-array to the left of the middle item. Otherwise, the item is searched for in the sub-

array to the right of the middle item. This process continues on the sub-array as well until

the size of the subarray reduces to zero.

Before applying binary searching, the list of items should be sorted in ascending or
descending order.
Best case time complexity is O(1)

Worst case time complexity is O(log n)

DS Using C++ Page 7

Algorithm:

Binary_Search (A [], U_bound, VAL)
Step 1 : set BEG = 0 , END = U_bound , POS = -1
Step 2 : Repeat while (BEG <= END)

Step 3 : set MID = (BEG + END) / 2
Step 4 : if A [MID] == VAL then

POS = MID
print VAL ― is available at ―, POS
GoTo Step 6

End if
if A [MID] > VAL then

set END = MID – 1

Else
set BEG = MID + 1

End if
End while

Step 5 : if POS = -1 then
print VAL ― is not present ―

End if

Step 6 : EXIT

SORTING

Arranging the elements in a list either in ascending or descending order. various sorting

algorithms are

Bubble sort

selection sort

Insertion sort
Quick sort

Merge sort

Heap sort

DS Using C++ Page 8

BUBBLE SORT

The bubble sort is an example of exchange sort. In this method, repetitive comparison is

performed among elements and essential swapping of elements is done. Bubble sort is

commonly used in sorting algorithms. It is easy to understand but time consuming i.e. takes

more number of comparisons to sort a list . In this type, two successive elements are

compared and swapping is done. Thus, step-by-step entire array elements are checked. It is

different from the selection sort. Instead of searching the minimum element and then

applying swapping, two records are swapped instantly upon noticing that they are not in

order.

ALGORITHM:

Bubble_Sort (A [] , N)

Step 1: Start
Step 2: Take an array of n elements
Step 3: for i=0,… n-2

Step 4: for j=i+1,…….n-1
Step 5: if arr[j]>arr[j+1] then

Interchange arr[j] and arr[j+1]
End of if

Step 6: Print the sorted array arr
Step 7:Stop

SELECTION SORT

selection sort:- Selection sort (Select the smallest and Exchange):

The first item is compared with the remaining n-1 items, and whichever of all is
lowest, is put in the first position.Then the second item from the list is taken and compared
with the remaining (n-2) items, if an item with a value less than that of the second item is
found on the (n-2) items, it is swapped (Interchanged) with the second item of the list and so
on.

DS Using C++ Page 9

INSERTION SORT

Insertion sort: It iterates, consuming one input element each repetition, and growing a

sorted output list. Each iteration, insertion sort removes one element from the input data,

finds the location it belongs within the sorted list, and inserts it there. It repeats until no

input elements remain.

ALGORITHM:

Step 1: start
Step 2: for i ← 1 to length(A)

Step 3: j ← i

Step 4: while j > 0 and A[j-1] > A[j]

Step 5: swap A[j] and A[j-1]

Step 6: j ← j - 1

Step 7: end while
Step 8: end for

Step9: stop

QUICK SORT

Quick sort: It is a divide and conquer algorithm. Developed by Tony Hoare in 1959. Quick

sort

first divides a large array into two smaller sub-arrays: the low elements and the high

elements.

Quick sort can then recursively sort the sub-arrays.

ALGORITHM:

Step 1: Pick an element, called a pivot, from the array.

Step 2: Partitioning: reorder the array so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than the pivot come

after it (equal values can go either way). After this partitioning, the pivot is in its

final position. This is called the partition operation.

Step 3: Recursively apply the above steps to the sub-array of elements with smaller

values and separately to the sub-array of elements with greater values.

DS Using C++ Page 10

MERGE SORT

Merge sort is a sorting technique based on divide and conquer technique. In merge sort the

unsorted list is divided into N sublists, each having one element, because a list of one

element is considered sorted. Then, it repeatedly merge these sublists, to produce new sorted

sublists, and at lasts one sorted list is produced. Merge Sort is quite fast, and has a time

complexity of O(n log n).

Conceptually, merge sort works as follows:

1. Divide the unsorted list into two sub lists of about half the size.
2. Divide each of the two sub lists recursively until we have list sizes of length 1, in which

case the list itself is returned.

3. Merge the two sub lists back into one sorted list.

int main()

{
int n,i;
int list[30];

cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)

cin>>list[i];
mergesort (list,0,n-1);
cout<<" after sorting\n";
for(i=0;i<n;i++)
cout<<list[i]<<‖\t‖;

return 0;

}

RUN 1:

enter no of elements 5

enter 5 numbers 44 33 55 11 -1

after sorting -1 11 33 44 55

DS Using C++ Page 11

HEAP SORT

It is a completely binary tree with the property that a parent is always greater than or

equal to either of its children (if they exist). first the heap (max or min) is created using

binary tree and then heap is sorted using priority queue.

Steps Followed:

a) Start with just one element. One element will always satisfy heap property.

b) Insert next elements and make this heap.

c) Repeat step b, until all elements are included in the heap.

a) Exchange the root and last element in the heap.

b) Make this heap again, but this time do not include the last node.

c) Repeat steps a and b until there is no element left.

Algorithm Worst case Average case Best case

Bubble sort O(n2) O(n2) O(n2)
selection sort O(n2) O(n2) O(n2)

Insertion sort O(n2) O(n2) O(n2)
Quick sort O(n log n) O(n log n) O(n2)
Merge sort O(n log n) O(n log n) O(n log n)

Heap sort O(n log n) O(n log n) O(n log n)
Linear search O(n) O(n) O(1)

Binary search O(log n) O(log n) O(1)

DS Using C++ Page 12

Basic data structures- The list ADT, Stack ADT, Queue ADT,array and linked list Implementation

using template classes in C++.Trees-Basic terminology Binary Tree ADT, array and linked list

Implementation, Binary tree traversals, threaded binary tree.

UNIT -2

Data structure A data structure is a specialized format for organizing and storing data.

General data structure types include the array, the file, the record, the table, the tree, and so

on. Any data structure is designed to organize data to suit a specific purpose so that it can be

accessed and worked with in appropriate ways

Abstract Data Type

In computer science, an abstract data type (ADT) is a mathematical model for data

types where a data type is defined by its behavior (semantics) from the point of view of a

user of the data, specifically in terms of possible values, possible operations on data of this

type, and the behavior of these operations. When a class is used as a type, it is an abstract

type that refers to a hidden representation. In this model an ADT is typically implemented

as a class, and each instance of the ADT is usually a n object of that class. In ADT all the

implementation details are hidden

Linear data structures are the data structures in which data is arranged in a list or

in a sequence.

Non linear data structures are the data structures in which data may be

arranged in a hierarchic al manner

LIST ADT

List is basically the collection of elements arrange d in a sequential manner. In

memory we can store the list in two ways: one way is we can store the elements in

sequential memory locations. That means we can store the list in arrays.

The other way is we can use pointers or links to associate elements sequentially.

This is known as linked list.

DS Using C++ Page 13

LINKED LISTS

The linked list is very different type of collection from an array. Using such lists, we

can store collections of information limited only by the total amount of memory that the OS

will allow us to use.Further more, there is no need to specify our needs in advance. The

linked list is very flexible dynamic data structure : items may be added to it or deleted from

it at will. A programmer need not worry about how many items a program will have to

accommodate in advance. This allows us to write robust programs which require much less

maintenance.

The linked allocation has the following draw backs:

1. No direct access to a particular element.

2. Additional memory required for pointers.

Linked list are of 3 types:

1. Singly Linked List

2. Doubly Linked List

3. Circularly Linked List

SINGLY LINKED LIST

A singly linked list, or simply a linked list, is a linear collection of data items. The

linear order is given by means of POINTERS. These types of lists are often referred to

as linear linked list.

* Each item in the list is called a node.

* Each node of the list has two fields:

1. Information- contains the item being stored in the list.

2. Next address- contains the address of the next item in the list.

* The last node in the list contains NULL pointer to indicate that it is the end

of the list. Conceptual view of Singly Linked List

Operations on Singly linked list:

Insertion of a node

Deletions of a node

Traversing the list

DS Using C++ Page 14

temp

temp->link=head;

head=temp;

Structure of a node:

Method -1:

struct node

{

int data;
struct node *link;

};

Method -2:

class node

{

public:
int data;
node *link;

};

Insertions: To place an elements in the list there are 3 cases :

1. At the beginning

2. End of the list

3. At a given position

case 1:Insert at the beginning

head is the pointer variable which contains address of the first node and temp contains

address of new node to be inserted then sample code is

After insertion:

link Data

DS Using C++ Page 15

t=head;

while(t->link!=NULL)
{

t=t->link;

}

t->link=temp;

Code for insert front:-

template <class T>
void list<T>::insert_front()
{
struct node <T>*t,*temp;

cout<<"Enter data into node:";
cin>>item;

temp=create_node(item);
if(head==NULL)

head=temp;

else

{temp->link=head;

head=temp;

}

}

case 2:Inserting end of the list

temp

head is the pointer variable which contains address of the first node and temp contains

address of new node to be inserted then sample code is

After insertion the linked list is

DS Using C++ Page 16

c=1;

while(c<pos)

{
prev=cur;
cur=cur->link;
c++;

}
prev->link=temp;

temp->link=cur;

Code for insert End:-

template <class T>

void list<T>::insert_end()

{
struct node<T> *t,*temp;
int n;

cout<<"Enter data into node:";
cin>>n;
temp=create_node(n);
if(head==NULL)

head=temp;
else
{t=head; while(t-

>link!=NULL)
t=t->link;

t->link=temp;

}
}

case 3: Insert at a position

insert node at position 3

head is the pointer variable which contains address of the first node and temp contains
address of new node to be inserted then sample code is

DS Using C++ Page 17

Code for inserting a node at a given position:-

template <class T>

void list<T>::Insert_at_pos(int pos)

{struct node<T>*cur,*prev,*temp;
int c=1;

cout<<"Enter data into node:";
cin>>item

temp=create_node(item);

if(head==NULL)

head=temp;
else
{

prev=cur=head;

if(pos==1)

{

}
else

{

temp->link=head;
head=temp;

while(c<pos)

{c++;

prev=cu

r;

cur=cur->link;

}
prev->link=temp;

temp->link=cur;

}

}

}

Deletions: Removing an element from the list, without destroying the integrity of the list

itself.

To place an element from the list there are 3 cases :

1. Delete a node at beginning of the list

2. Delete a node at end of the list

3. Delete a node at a given position

DS Using C++ Page 18

struct node<T>*cur,*prev;

cur=prev=head;

while(cur->link!=NULL)
{prev=cur; cur=cur-

>link;

}

prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";

free(cur);

Case 1: Delete a node at beginning of the list

head

head is the pointer variable which contains address of the first node

sample code is
t=head;

head=head->link;

cout<<"node "<<t->data<<" Deletion is sucess";

delete(t);

head

Case 2. Delete a node at end of the list

head

To delete last node , find the node using following code

head

DS Using C++ Page 19

c=1;

while(c<pos)

{c++;

prev=cu

r;

cur=cur->link;

}

Code for deleting a node at end of the list

template <class T>

void list<T>::delete_end()
{
struct node<T>*cur,*prev;

cur=prev=head;
if(head==NULL)

cout<<"List is Empty\n";

else

{cur=prev=head; if(head-

>link==NULL)

{

else

cout<<"node "<<cur->data<<" Deletion is
sucess"; free(cur);

head=NULL;

}

{while(cur->link!=NULL)

{prev=cur; cur=cur-

>link;

}
prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";

free(cur);

}
}

}

CASE 3. Delete a node at a given position

head

Delete node at position 3

head is the pointer variable which contains address of the first node. Node to be deleted is

node

containing value 30.
Finding node at position 3

DS Using C++ Page 20

40 30 20 10

prev->link=cur->link;
cout<<cur->data <<"is deleted successfully";

delete cur;

NULL

NULL

prev cur

cur is the node to be deleted . before deleting update links

code to update links

Traversing the list: Assuming we are given the pointer to the head of the list, how do we

get the end of the list.

template <class T>

void list<T>:: display()

{
struct node<T>*t;

if(head==NULL)

{

cout<<"List is Empty\n";
}

else

{t=head;

while(t!=NUL

L)

{cout<<t->data<<"->";

t=t->link;
}

}

}

prev

40

30

20

10

DS Using C++ Page 21

10

NULL

30

DOUBLY LINKED LIST

A singly linked list has the disadvantage that we can only traverse it in one direction.

Many applications require searching backwards and forwards through sections of a list. A

useful refinement that can be made to the singly linked list is to create a doubly linked list.

The distinction made between the two list types is that while singly linked list have pointers

going in one direction, doubly linked list have pointer both to the next and to the previous

element in the list. The main advantage of a doubly linked list is that, they permit traversing

or searching of the list in both directions.

In this linked list each node contains three fields.

a) One to store data

b) Remaining are self referential pointers which points to previous and next nodes

in the list

prev data next

Implementation of node using structure

Method -1:

struct node

{

int data;
struct node *prev;
struct node * next;

};

Implementation of node using class

Method -2:

class node

{

public:

int data;
node *prev;

node * next;

};

Operations on Doubly linked list:

Insertion of a node

Deletions of a node

Traversing the list

20

NUL

L

DS Using C++ Page 22

head

temp->next=head;

head->prev=temp;

head=temp;

Doubly linked list ADT:

template <class T>

class dlist

{

public:

int data;
struct dnode<T>*head;

dlist()
{

head=NULL;

}
void display();
struct dnode<T>*create_dnode(int n);
void insert_end();
void insert_front();
void delete_end();
void delete_front();
void dnode_count();

void Insert_at_pos(int pos);

void Delete_at_pos(int pos);

};

Insertions: To place an elements in the list there are 3 cases

1. At the beginning

2. End of the list
3. At a given position

case 1:Insert at the beginning

head is the pointer variable which contains address of the first node and temp contains

address of new node to be inserted then sample code is

10

20

40

NUL

L

30

DS Using C++ Page 23

Code for insert front:-

template <class T>

void DLL<T>::insert_front()

{

struct dnode <T>*t,*temp;

cout<<"Enter data into node:";

cin>>data;

temp=create_dnode(data);

if(head==NULL)

head=temp;

else

{temp-

}

}

>next=head

; head-

>prev=temp

;

head=temp;

Code to insert a node at End:-

template <class T>

void DLL<T>::insert_end()

{

struct dnode<T> *t,*temp;

int n;

cout<<"Enter data into dnode:";

cin>>n;

temp=create_dnode(n);

if(head==NULL)

head=temp;

else

{t=head; while(t-

>next!=NULL)

t=t->next;

t->next=temp;

temp->prev=t;

}

}

DS Using C++ Page 24

Code to insert a node at a position

template <class T>

void dlist<T>::Insert_at_pos(int pos)
{
struct dnode<T>*cr,*pr,*temp;
int count=1;

cout<<"Enter data into dnode:";
cin>>data;

temp=create_dnode(data);
display();

if(head==NULL)
{//when list is empty

head=temp;
}

else

{pr=cr=head;

if(pos==1)

{//inserting at pos=1

temp-

>next=head;

head=temp;

}
else

{

while(count<pos)

{count++;

pr=cr;

cr=cr->next;
}
pr->next=temp;
temp->prev=pr;
temp->next=cr;
cr->prev=temp;

}
}

}

Deletions: Removing an element from the list, without destroying the integrity of the list

itself.

To place an element from the list there are 3 cases :

1. Delete a node at beginning of the list

2. Delete a node at end of the list

3. Delete a node at a given position

DS Using C++ Page 25

10

NUL

L

20

t=head;

head=head->next;

head->prev=NULL;
cout<<"dnode "<<t->data<<" Deletion is sucess";

delete(t);

20

NULL

head

10

NULL

30

Case 1: Delete a node at beginning of the list

head

head is the pointer variable which contains address of the first node

sample code is

code for deleting a node at front

template <class T>

void dlist<T>:: delete_front()
{struct dnode<T>*t;

if(head==NULL)

cout<<"List is Empty\n";
else

{t=head;
head=head->next;
head->prev=NULL;
cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);

}

}

NUL

L

NUL

L

30

DS Using C++ Page 26

cr

NULL 30 NULL 20

struct dnode<T>*pr,*cr;

pr=cr=head;

while(cr->next!=NULL)
{pr=cr; cr=cr-

>next;

}
pr->next=NULL;
cout<<"dnode "<<cr->data<<" Deletion is sucess";

delete(cr);

10 NULL

Case 2. Delete a node at end of the list

To deleted the last node find the last node. find the node using following code

head

pr

code for deleting a node at end of the list

template <class T>

void dlist<T>::delete_end()
{
struct dnode<T>*pr,*cr;

pr=cr=head;
if(head==NULL)

cout<<"List is Empty\n";
else
{cr=pr=head; if(head-

>next==NULL)

{

}

else

cout<<"dnode "<<cr->data<<" Deletion is
sucess"; delete(cr);

head=NULL;

{while(cr->next!=NULL)
{pr=cr;

cr=cr->next;
}
pr->next=NULL;
cout<<"dnode "<<cr->data<<" Deletion is sucess";
delete(cr);

}
}

}

DS Using C++ Page 27

NULL 10

 30

 20 NULL

NULL 10 30 20

NUL

L

cr

pr

CASE 3. Delete a node at a given position

head

Delete node at position 2

head is the pointer variable which contains address of the first node. Node to be deleted is

node

containing value 30.
Finding node at position 2.

while(count<pos)

{pr=cr; cr=cr-

>next;

count++;

}
pr->next=cr->next;
cr->next->prev=pr;

head

DS Using C++ Page 28

CIRCULARLY LINKED LIST

A circularly linked list, or simply circular list, is a linked list in which the last node is
always points to the first node. This type of list can be build just by replacing the NULL
pointer at the end of the list with a pointer which points to the first node. There is no first or

last node in the circular list.

Advantages:

Any node can be traversed starting from any other node in the list.
There is no need of NULL pointer to signal the end of the list and hence, all
pointers contain valid addresses.

In contrast to singly linked list, deletion operation in circular list is simplified as the
search for the previous node of an element to be deleted can be started from that
item itself.

head

STACK ADT:- A Stack is a linear data structure where insertion and deletion of items takes

place at one end called top of the stack. A Stack is defined as a data structure which operates

on a last-in first-out basis. So it is also is referred as Last-in First-out(LIFO).

Stack uses a single index or pointer to keep track of the information in the stack.

The basic operations associated with the stack are:
a) push(insert) an item onto the stack.

b) pop(remove) an item from the stack.

The general terminology associated with the stack is as follows:

A stack pointer keeps track of the current position on the stack. When an element is
placed on the stack, it is said to be pushed on the stack. When an object is removed from
the stack, it is said to be popped off the stack. Two additional terms almost always used
with stacks are overflow, which occurs when we try to push more information on a stack
that it can hold, and underflow, which occurs when we try to pop an item off a stack which
is empty.

Pushing items onto the stack:

Assume that the array elements begin at 0 (because the array subscript starts from 0)

and the maximum elements that can be placed in stack is max. The stack pointer, top, is
considered to be pointing to the top element of the stack. A push operation thus involves

adjusting the stack pointer to point to next free slot and then copying data into that slot of
the stack. Initially the top is initialized to -1.

DS Using C++ Page 29

//code to push an element on to stack;

template<class T>

void stack<T>::push()
{

if(top==max-1)

cout<<"Stack Overflow...\n";
else

{

}

}

cout<<"Enter an element to be pushed:";

top++;
cin>>data;
stk[top]=data;

cout<<"Pushed Sucesfully ... \n";

Popping an element from stack:

To remove an item, first extract the data from top position in the stack and then
decrement the stack pointer, top.

Applications of Stack:

1. Stacks are used in conversion of infix to postfix expression.

2. Stacks are also used in evaluation of postfix expression.

3. Stacks are used to implement recursive procedures.

4. Stacks are used in compilers.

5. Reverse String

An arithmetic expression can be written in three different but equivalent notations,

i.e., without changing the essence or output of an expression. These notations are −

1. Infix Notation

2. Prefix (Polish) Notation

3. Postfix (Reverse-Polish) Notation

DS Using C++ Page 30

Conversion of Infix Expressions to Prefix and Postfix

Convert following infix expression to prefix and postfix

(A + B) * C - (D - E) * (F + G)

The Tower of Hanoi (also called the Tower of Brahma or Lucas' Tower,[1] and sometimes

pluralized) is a mathematical game or puzzle. It consists of three rods, and a number of

disks of different sizes which can slide onto any rod. The puzzle starts with the disks in a

neat stack in ascending order of size on one rod, the smallest at the top, thus making a

conical shape.

DS Using C++ Page 31

The objective of the puzzle is to move the entire stack to another rod, obeying the following

simple rules:

1. Only one disk can be moved at a time.
2. Each move consists of taking the upper disk from one of the stacks and placing it on top
of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3. No disk may be placed on top of a smaller disk.

QUEUE ADT

A queue is an ordered collection of data such that the data is inserted at one end and
deleted from another end. The key difference when compared stacks is that in a queue the
information stored is processed first-in first-out or FIFO. In other words the information
receive from a queue comes in the same order that it was placed on the queue.

Representing a Queue:

One of the most common way to implement a queue is using array. An easy way to do so is

to

define an array Queue, and two additional variables front and rear. The rules for

manipulating these
variables are

simple:

Each time information is added to the queue, increment rear.
Each time information is taken from the queue, increment front.
Whenever front >rear or front=rear=-1 the queue is empty.

Array implementation of a Queue do have drawbacks. The maximum queue size has to
be set at compile time, rather than at run time. Space can be wasted, if we do not use the

full capacity of the array.

DS Using C++ Page 32

if((rear==max)

cout<‖Queue is full‖;

Operations on Queue:

A queue have two basic operations:
a) adding new item to the queue

b) removing items from queue.
The operation of adding new item on the queue occurs only at one end of the queue called
the rear or back.

The operation of removing items of the queue occurs at the other end called the front.

For insertion and deletion of an element from a queue, the array elements begin at 0 and

the maximum elements of the array is maxSize. The variable front will hold the index of

the item that is considered the front of the queue, while the rear variable will hold the

index of the last item in the queue.

Assume that initially the front and rear variables are initialized to -1. Like stacks,
underflow and overflow conditions are to be checked before operations in a queue.

Queue empty

Queue Full or overflow condition is

or underflow condition is

if((front>rear)||front= =-1)

cout<‖Queue is empty‖;

DS Using C++ Page 33

if(front==-1)

cout<<"Queue is empty";

if(front==(rear+1)%max)

{

cout<<"Circular Queue is full\n";

}

Application of Queue:

Queue, as the name suggests is used whenever we need to have any group of objects in

an order in which the first one coming in, also gets out first while the others wait for
there turn, like in the following scenarios :

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.
2. In real life, Call Center phone systems will use Queues, to hold people calling them in
an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same

order as they arrive, First come first served.

CIRCULAR QUEUE

Once the queue gets filled up, no more elements can be added to it even if any element
is removed from it consequently. This is because during deletion, rear pointer is not
adjusted.

When the queue contains very few items and the rear pointer points to last element. i.e.

rear=maxSize-1, we cannot insert any more items into queue because the overflow condition

satisfies. That means a lot of space is wasted

.Frequent reshuffling of elements is time consuming. One solution to this is

arranging all elements in a circular fashion. Such structures are often referred to as Circular

Queues.

A circular queue is a queue in which all locations are treated as circular such that

the first location CQ[0] follows the last location CQ[max-1].

Circular Queue empty or underflow condition is

Circular Queue Full or overflow condition is

DS Using C++ Page 34

Insertion into a Circular Queue:

Algorithm CQueueInsertion(Q,maxSize,Front,Rear,item)

Step 1: If Rear = maxSize-1 then

Rear = 0
else

Rear=Rear+1
Step 2: If Front = Rear then

print ―Queue Overflow‖

Return

Step 3: Q[Rear] = item

Step 4: If Front = 0 then

Front = 1

Step 5: Return

Deletion from Circular Queue:

Algorithm CQueueDeletion(Q,maxSize,Front,Rear,item)

Step 1: If Front = 0 then
print ―Queue Underflow‖
Return

Step 2: K=Q[Front]
Step 3: If Front = Rear then

begin

Front = -1
Rear = -1

end

else

If Front = maxSize-1 then
Front = 0

else

Front = Front + 1

Step 4: Return K

DS Using C++ Page 35

DEQUEUE

In a linear queue, the usual practice is for insertion of elements we use one end called rear
for deletion of elements we use another end called as front. But in the doubly ended queue
we can make use of both the ends for insertion of the elements as well as we can use both
the ends for deletion of the elements. That means it is possible to insert the elements by rear

as well as by front. Similarly it is possible to delete the elements from rear.

Normally insertion of elements is done at rear end and delete the elements from front end.

For example elements 10,20,30 are inserted at rear end.

To insert any element from front end then first shift all the elements to the right. It s

DS Using C++ Page 36

TREES:

Definition : A Tree is a data structure in which each element is attached to one or more
elements directly beneath it.

Terminology

The connections between elements are called branches.

A tree has a single root, called root node, which is shown at the top of the tree.

i.e. root is always at the highest level 0.
Each node has exactly one node above it, called parent. Eg: A is the parent of B,C
and D.

The nodes just below a node are called its children. ie. child nodes are one level

lower than the

parent node.
A node which does not have any child called leaf or terminal node.
Nodes with at least one child are called non terminal or internal nodes.
The child nodes of same parent are said to be siblings.

A path in a tree is a list of distinct nodes in which successive nodes are connected by
branches in the tree.

The length of a particular path is the number of branches in that path.
The degree of a node of a tree is the number of children of that node. The total
number of sub-trees attached to the node is called the degree of the node.Eg: For
node A degree is 3. For node K degree is 0

The maximum number of children a node can have is often referred to as the order

of a tree. The height or depth of a tree is the length of the longest path from root to
any leaf.

BINARY TREES

Binary tree is a tree in which each node has at most two children, a left child and a right
child. Thus the order of binary tree is 2.

A binary tree is either empty or consists of

a) a node called the root

b) left and right sub trees are themselves binary trees.

DS Using C++ Page 37

A binary tree is a finite set of nodes which is either empty or consists of a root and

two disjoint trees called left sub-tree and right sub-tree.

In binary tree each node will have one data field and two pointer fields for representing the
sub branches.

The degree of each node in the binary tree will be at the most two.

Types Of Binary Trees: There are 3 types of binary trees:

1. Left skewed binary tree: If the right sub-tree is missing in every node of a tree we call it
as left skewed tree.

2. Right skewed binary tree: If the left sub-tree is missing in every node of a tree we

call it is right subtree.

3. Complete binary tree:

The tree in which degree of each node is at the most two is called a complete binary tree. In

a

complete binary tree there is exactly one node at level 0, two nodes at level 1 and four nodes
at level 2 and so on. So we can say that a complete binary tree depth d will contain exactly
2l nodes at each level l, where l is from 0 to d.

Note:

1. A binary tree of depth n will have maximum 2n -1 nodes.

2. A complete binary tree of level l will have maximum 2l nodes at each level, where l starts

from 0.

3. Any binary tree with n nodes will have at the most n+1 null branches.
4. The total number of edges in a complete binary tree with n terminal nodes are 2(n-1).

Binary Tree Representation

A binary tree can be represented mainly in 2 ways:

a) Sequential Representation

b) Linked Representation

a) Sequential Representation

DS Using C++ Page 38

The simplest way to represent binary trees in memory is the sequential representation
that uses one-dimensional array.
1) The root of binary tree is stored in the 1 st location of array
2) If a node is in the i th location of array, then its left child is in the location 2i+1 and its

right child in
the location 2i+2
3) The maximum size that is required for an array to store a tree is 2d+1-1, where d is the
depth of the tree.

Advantages of sequential representation:

The only advantage with this type of representation is that the

direct access to any node can be possible and finding the parent or left children of any
particular node is fast because of the random access.

Disadvantages of sequential representation:

1. The major disadvantage with this type of representation is wastage of memory. For
example in the skewed tree half of the array is unutilized.
2. In this type of representation the maximum depth of the tree has to be fixed. Because we
have decide the array size. If we choose the array size quite larger than the depth of the tree,

then it will be wastage of the memory. And if we choose array size lesser than the depth of
the tree then we will be unable to represent some part of the tree.

3. The insertions and deletion of any node in the tree will be costlier as other nodes has to
be adjusted at appropriate positions so that the meaning of binary tree can be preserved.

As these drawbacks are there with this sequential type of representation, we will

search for more flexible representation. So instead of array we will make use of

linked list to represent the tree.

b) Linked Representation

Linked representation of trees in memory is implemented using pointers. Since each node
in a binary tree can have maximum two children, a node in a linked representation has two
pointers for both left and right child, and one information field. If a node does not have any
child, the corresponding pointer field is made NULL pointer. In linked list each node will
look like this:

Left Child

Data
Right

Child

DS Using C++ Page 39

Advantages of linked representation:

1. This representation is superior to our array representation as there is no
wastage of memory. And so there is no need to have prior knowledge of depth of
the tree. Using dynamic memory concept one can create as much memory(nodes)
as required. By chance if some nodes are unutilized one can delete the nodes by
making the address free.

2. Insertions and deletions which are the most common operations can be done

without moving the nodes.

Disadvantages of linked representation:

1. This representation does not provide direct access to a node and special algorithms are

required.

2. This representation needs additional space in each node for storing the left and right sub-

trees.

TRAVERSING A BINARY TREE

Various Tree Traversals are

a. In-order

b. pre-order

c. post-order

DS Using C++ Page 40

Inorder Traversal:

C-B-A-D-E is the inorder traversal i.e. first we go towards the leftmost node. i.e. C so print

that node C. Then go back to the node B and print B. Then root node A then move towards

the right sub-tree print D and finally E. Thus we are following the tracing sequence of

Left|Root|Right. This type of traversal is called inorder traversal. The basic principle is to

traverse left sub-tree then root and then the right sub-tree.
template <class T>
void inorder(bintree<T> *root)

{
if(temp!=NULL)

{

inorder(root->left);

cout<<‖root->data‖;

inorder(root->right);
}

}

DS Using C++ Page 41

Preorder Traversal

A-B-C-D-E is the preorder traversal of the above fig. We are following Root|Left|Right

path i.e. data at the root node will be printed first then we move on the left sub-tree and go

on printing the data till we reach to the left most node. Print the data at that node and then

move to the right sub-tree. Follow the same principle at each sub-tree and go on printing the

data accordingly.

template <class T>

void inorder(bintree<T> *root)

{
if(temp!=NULL)

{
cout<<‖root->data‖;
preorder(root->left);
preorder(root->right);

}

}

Postorder Traversal:

From figure the postorder traversal is C-D-B-E-A. In the postorder traversal we are

following the Left|Right|Root principle i.e. move to the leftmost node, if right sub-tree is

there or not if not then print the leftmost node, if right sub-tree is there move towards the

right most node. The key idea here is that at each subtree we are following the

Left|Right|Root principle and print the data accordingly.

DS Using C++ Page 42

template <class T>

void inorder(bintree<T> *root)

{

if(temp!=NULL)
{

postorder(root->left);

postorder(root->right);

cout<<‖root->data‖;

}
}.

Threaded binary tree:- "A binary tree is threaded by making all right child pointers that

would normally be null point to the inorder successor of the node (if it exists), and all left

child pointers that would normally be null point to the inorder predecessor of the node."

There are many ways to thread a binary tree these are—

1. The right NULL pointer of each leaf node can be replaced by a thread to the successor

of that node under in order traversal called a right thread, and the tree will called a right

in- threaded tree or right threaded binary tree.

DS Using C++ Page 43

2. The left NULL pointer of each node can be replaced by a thread to the predecessor of

that node under in order traversal called left thread, and the tree will called a left in-

threaded tree.

3. Both left and right NULL pointers can be used to point to predecessor and successor of

that node respectively, under in order traversal. Such a tree is called a fully threaded tree.

A threaded binary tree where only one thread is used is also known as one way threaded tree

and where both threads are used is also known as two way threaded tree

DS Using C++ Page 44

Priority Queues – Definition, ADT, Realizing a Priority Queue using Heaps, Definition, insertion, Deletion,

External Sorting- Model for external sorting, Multiway merge, Polyphase merge.

UNIT-3

Priority Queue

DEFINITION:

A priority queue is a collection of zero or more elements. Each element has a priority or value.
Unlike the queues, which are FIFO structures, the order of deleting from a priority queue is determined by
the element priority.
Elements are removed/deleted either in increasing or decreasing order of priority rather than in the order in
which they arrived in the queue.

There are two types of priority queues:

 Min priority queue

Max priority queue

Min priority queue: Collection of elements in which the items can be inserted arbitrarily, but only smallest

element can be removed.

Max priority queue: Collection of elements in which insertion of items can be in any order but only largest

element can be removed.

In priority queue, the elements are arranged in any order and out of which only the smallest or largest

element allowed to delete each time.
The implementation of priority queue can be done using arrays or linked list. The data structure heap is
used to implement the priority queue effectively.

APPLICATIONS:
1. The typical example of priority queue is scheduling the jobs in operating system. Typically OS allocates

priority to jobs. The jobs are placed in the queue and position of the job in priority queue determines their
priority. In OS there are 3 jobs- real time jobs, foreground jobs and background jobs. The OS always
schedules the real time jobs first. If there is no real time jobs pending then it schedules foreground jobs.
Lastly if no real time and foreground jobs are pending then OS schedules the background jobs.

2. In network communication, the manage limited bandwidth for transmission the priority queue is used.

3. In simulation modeling to manage the discrete events the priority queue is used.

Various operations that can be performed on priority queue are-

1. Find an element
2. Insert a new element
3. Remove or delete an element

The abstract data type specification for a max priority queue is given below. The specification for a min priority

queue is the same as ordinary queue except while deletion, find and remove the element with minimum priority

ABSTRACT DATA TYPE(ADT):

Abstract data type maxPriorityQueue
{
Instances

Finite collection of elements, each has a priority

Operations empty():return true iff the queue is empty

size() :return number of elements in the queue

top() :return element with maximum priority

del() :remove the element with largest priority from the queue

insert(x): insert the element x into the queue

}

DS Using C++ Page 45

18 4

12 4 12 14

11 10 18 20

HEAPS

Heap is a tree data structure denoted by either a max heap or a min heap.

A max heap is a tree in which value of each node is greater than or equal to value of its children nodes. A

min heap is a tree in which value of each node is less than or equal to value of its children nodes.

Max heap Min heap

Insertion of element in the Heap:

Consider a max heap as given below:

Now if we want to insert 7. We cannot insert 7 as left child of 4. This is because the max heap has a property that

value of any node is always greater than the parent nodes. Hence 7 will bubble up 4 will be left child of 7.

Note: When a new node is to be inserted in complete binary tree we start from bottom and from left child on
the current level. The heap is always a complete binary tree.

DS Using C++ Page 46

inserted!

If we want to insert node 25, then as 25 is greatest element it should be the root. Hence 25 will bubble up and 18

will move down.

inserted!

The insertion strategy just outlined makes a single bubbling pass from a leaf toward the root. At each level we

do (1) work, so we should be able to implement the strategy to have complexity O(height) = O(log n).

void Heap::insert(int item)

{
int temp;

temp=++size;

//temp node starts at leaf and moves up.

while(temp!=1 && heap[temp/2]<item)

{

//moving element down

H[temp] = H[temp/2]; temp=temp/2;

//finding the parent
}
H[temp]=item;

}

18

12 7

11
10 4

25

12 18

11
10 4

DS Using C++ Page 47

25

12 18

11
10 4

Deletion of element from the heap:

For deletion operation always the maximum element is deleted from heap. In Max heap the maximum

element is always present at root. And if root element is deleted then we need to reheapify the tree.

Consider a Max heap

Delete root element:25, Now we cannot put either 12 or 18 as root node and that should be greater than all its

children elements.

Now we cannot put 4 at the root as it will not satisfy the heap property. Hence we will bubble up 18 and place 18 at
root, and 4 at position of 18.

If 18 gets deleted then 12 becomes root and 11 becomes parent node of 10.

Thus deletion operation can be performed. The time complexity of deletion operation is O(log n).

1. Remove the maximum element which is present at the root. Then a hole is created at the root.
2. Now reheapify the tree. Start moving from root to children nodes. If any maximum element is found then

place it at root. Ensure that the tree is satisfying the heap property or not.

3. Repeat the step 1 and 2 if any more elements are to be deleted.

void heap::delet(int item)

{

int item, temp;

if(size==0)

cout<<‖Heap is empty\n‖; else

{

//remove the last elemnt and reheapify
item=H[size--];

18

12 4

11 10

DS Using C++ Page 48

25

12 18

11
10 4

//item is placed at root temp=1;

child=2;

while(child<=size)

{

For deletion operation always the maximum element is deleted from heap. In Max heap the maximum

element is always present at root. And if root element is deleted then we need to reheapify the tree.

Consider a Max heap

Delete root element:25, Now we cannot put either 12 or 18 as root node and that should be greater than all its

children elements.

Now we cannot put 4 at the root as it will not satisfy the heap property. Hence we will bubble up 18 and place 18 at
root, and 4 at position of 18.

If 18 gets deleted then 12 becomes root and 11 becomes parent node of 10.

Thus deletion operation can be performed. The time complexity of deletion operation is O(log n).

4. Remove the maximum element which is present at the root. Then a hole is created at the root.
5. Now reheapify the tree. Start moving from root to children nodes. If any maximum element is found then

place it at root. Ensure that the tree is satisfying the heap property or not.

6. Repeat the step 1 and 2 if any more elements are to be deleted.

void heap::delet(int item)

{

int item, temp;

if(size==0)

cout<<‖Heap is empty\n‖; else

{
//remove the last elemnt and reheapify
item=H[size--];

//item is placed at root temp=1;

18

12 4

11 10

+

child=2;
while(child<=size)

{
if(child<size && H[child]<H[child+1]) child++;

if(item>=H[child])

break;
H[temp]=H[child];
temp=child;
child=child*2;

}
//pl;ace the largest item at root
H[temp]=item;

}

Applications Of Heap:

1. Heap is used in sorting algorithms. One such algorithm using heap is known as heap sort.

2. In priority queue implementation the heap is used.

HEAP SORT

Heap sort is a method in which a binary tree is used. In this method first the heap is created using binary tree and then

heap is sorted using priority queue.

Eg:

25 57 48 38 10 91 84 33

In the heap sort method we first take all these elements in the array ―A‖

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

25 57 48 38 10 91 84 33

Now start building the heap structure. In forming the heap the key point is build heap in such a way that

the highest value in the array will always be a root.

Insert 25

DS Using C+ Page 49

DS Using C++ Page 50

The next element is 84, which 91>84>57 the middle element. So 84 will be the parent of 57. For making

the complete binary tree 57 will be attached as right of 84.

DS Using C++ Page 51

Now the heap is formed. Let us sort it. For sorting the heap remember two main things the first thing is that the

binary tree form of the heap should not be distributed at all. For the complete sorting binary tree should be remained.

And the second thing is that we will start sorting the higher elements at the end of array in sorted manner i.e..
A[7]=91, A[6]=84 and so on..
Step 1:- Exchange A[0] with A[7]

DS Using C++ Page 52

DS Using C++ Page 53

ep 5:-Exchane A[0] with A[2]

DS Using C++ Page 54

// If largest is not

root if (largest != i)

{

swap(&arr[i], &arr[largest]);

// Recursively heapify the affected sub-

tree heapify(arr, n, largest);

}

}

// function to do heap sort

void heapSort(int arr[], int n)

{ int i;
// Build heap (rearrange array) for

(i = n / 2 - 1; i >= 0; i--)

heapify(arr, n, i);

// One by one extract an element from

heap for (i=n-1; i>=0; i--)

{
// Move current root to end

swap(&arr[0], &arr[i]);

// call max heapify on the reduced heap

heapify(arr, i, 0);

}
}
/* A utility function to print array of size n */

void printArray(int arr[], int n)

{
for (int i=0; i<n; ++i)

cout << arr[i] << " ";

cout << "\n";
}

int main()

{

int n,i;

int list[30];
cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" numbers ";

for(i=0;i<n;i++)

cin>>list[i];

heapSort(list, n);

cout << "Sorted array is \n";

printArray(list, n);

return 0;

}

DS Using C++ Page 55

EXTERNAL SORTING

All the algorithms require that the input fit into main memory. There are, some applications

where the input is much too large to fit into memory.

To do so, external sorting algorithms are designed to handle very large inputs.

Internal sorting deals with the ordering of records of a file in the ascending or descending

order when the whole file or list is compact enough to be accommodate in the internal

memory of the computer.
In many applications and problems it is quite common to encounter huge files comprising millions

of records which need to be sorted for their effective use in the application concerned.
The application domains of e-governance, digital library, search engines, on-line telephone
directory and electoral system, to list a few, deal with voluminous files of records.

Majority of the internal sorting techniques are virtually incapable of sorting large files since they require the whole

file in the internal memory of the computer, which is impossible. Hence the need for external sorting methods which

are exclusive strategies to sort huge files.

External sorting is a term for a class of sorting algorithms that can handle massive amounts of data. External

sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM)

and instead they must reside in the slower external memory (usually a hard drive). External sorting typically uses a

hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted,

and written out to a temporary file. In the merge phase, the sorted sub-files are combined into a single larger file.

One example of external sorting is the external merge sort algorithm, which sorts chunks that each fit in

RAM, then merges the sorted chunks together. We first divide the file into runs such that the size of a run is small

enough to fit into main memory. Then sort each run in main memory using merge sort sorting algorithm. Finally

merge the resulting runs together into successively bigger runs, until the file is sorted.

The principle behind external sorting

Due to their large volume, the files are stored in external storage devices such as tapes, disks or

drums.
The external sorting strategies therefore need to take into consideration the kind of medium on
which the files reside, since these influence their work strategy.

A common principal behind most popular external sorting methods is outlined below:

1. Internally sort batches of records from the source file to generate runs. Write out the runs as and

when they are generated on to the external storage devices.
2. Merge the runs generated in the earlier phase, to obtain larger but fewer runs, and write them out

onto the external storage devices.

3. Repeat the run generated and merge, until in the final phase only one run gets generated, on which

DS Using C++ Page 56

MULTIWAY MERGE:

K-Way Merge Algorithms or Multiway Merges are a specific type of Sequence Merge Algorithms that
specialize in taking in multiple sorted lists and merging them into a single sorted list.

Example 1:

External Sorting: Example of multiway external sorting

Ta1: 17, 3, 29, 56, 24, 18, 4, 9, 10, 6, 45, 36, 11, 43

Assume that we have three tapes (k = 3) and the memory can hold three records.

Main memory sort

The first three records are read into memory, sorted and written on Tb1, the
second three records are read into memory, sorted and stored on Tb2, finally

the third three records are read into memory, sorted and stored on Tb3. Now

we have one run on each of the three tapes:

Block of data

Intermediate

fies Secondary

storage

Main Memory

DS Using C++ Page 57

Tb1: 3, 17, 29

Tb2: 18, 24, 56

Tb3: 4, 9, 10

The next portion of three records is sorted into main memory

and stored as the second run on Tb1: Tb1: 3, 17, 29, 6, 36,

45

The next portion, which is also the last one, is sorted and stored onto Tb2:

Tb2: 18, 24, 56, 11, 43

Nothing is stored on Tb3.

Thus, after the main memory sort, our tapes look like this:

Tb1: 3, 17, 29, | 6, 36, 45,

Tb2: 18, 24, 56, | 11, 43
Tb3: 4, 9, 10

Merging

Merging runs of length M to obtain runs of length

k*M In our example we merge runs of length 3

and the resulting runs would be of length 9.

We build a heap tree in main memory out of the first records in each tape.

These records are: 3, 18, and 4.

We take the smallest of them - 3, using the deleteMin
operation, and store it on tape Ta1.

The record '3' belonged to Tb1, so we read the next record from Tb1 -

17, and insert it into the heap. Now the heap contains 18, 4, and 17.

The next deleteMin operation will output 4, and it will be stored on Ta1.

The record '4' comes from Tb3, so we read the next record '9' from Tb3

and insert it into the heap.

Now the heap contains 18, 17 and 9.

Proceeding in this way, the first three runs will be stored in sorted order on

Ta1. Ta1: 3, 4, 9, 10, 17, 18, 24, 29, 56

Now it is time to build a heap of the second three runs.

(In fact they are only two, and the run on Tb2 is not complete.)

The resulting sorted run on Ta2 will be:

Ta2: 6, 11, 36, 43, 45

DS Using C++ Page 58

This finishes the first pass.

 Building runs of length k*k*M

We have now only two tapes: Ta1 and Ta2.

We build a heap of the first elements of the two tapes - 3 and 6,

and output the smallest element '3' to tape Tb1.

Then we read the next record from the tape where the record '3' belonged - Ta1,

and insert it into the heap.

Now the heap contains 6 and 4, and using the deleteMin operation

the smallest record - 4 is output to tape Tb1.

Proceeding in this way, the entire file will be sorted on tape Tb1.

Tb1: 3, 4, 6, 9, 10, 11, 17, 18, 24, 29, 36, 43, 45, 56

The number of passes for the multiway merging is logk(N/M).

In the example this is [log3(14/3)] + 1 = 2.

Example 2:
If we have extra tapes, then we can expect to reduce the number of passes required to sort the input. This
is done by extending the basic (two- way) merge to a k-way merge.
Merging two runs is done by winding each input tape to the beginning of each run. Then the smaller
element is found, placed on an output tape, and the appropriate input tape is advanced. If there are k input
tapes, this strategy works the same way, the only difference being that it is slightly more complicated to
find the smallest of the k elements. We can find the smallest of these elements by using a priority queue.
To obtain the next element to write on the output tape, perform a deleteMin operation. The appropriate
input tape is advanced, and if the run on the input tape is not yet completed, we insert the new element
into the priority queue. For example distribute the input onto three tapes.

Ta1

Ta2

T

a3

Tb1 11 81 94 41 58 75

Tb2 12 35 96 15

Tb3 17 28 99

We need two more passes of three-way merging to complete the sort.

DS Using C++ Page 59

Dictionaries:- linear list representation, skip list representation, operations insertion, deletion and

searching, hash table representation, hash functions, collision resolution-separate chaining, open

addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing,

comparison of hashing and skip lists.

UNIT -4

DICTIONARIES:

Dictionary is a collection of pairs of key and value where every value is associated with the
corresponding key.

Basic operations that can be performed on dictionary are:
1. Insertion of value in the dictionary
2. Deletion of particular value from dictionary
3. Searching of a specific value with the help of key

Linear List Representation

The dictionary can be represented as a linear list. The linear list is a collection of pair and value.
There are two method of representing linear list.
1. Sorted Array- An array data structure is used to implement the dictionary.
2. Sorted Chain- A linked list data structure is used to implement the dictionary

Structure of linear list for dictionary:

class dictionary

{

private:

public:

};

int k,data;
struct node
{
public: int key;
int value;

struct node *next;
} *head;

dictionary();
void insert_d();
void delete_d();
void display_d();
void length();

Insertion of new node in the dictionary:

Consider that initially dictionary is empty then
head = NULL

We will create a new node with some key and value contained in it.

DS Using C++ Page 60

Now as head is NULL, this new node becomes head. Hence the dictionary contains only one

record. this node will be ‗curr‘ and ‗prev‘ as well. The ‗cuur‘ node will always point to current

visiting node and ‗prev‘ will always point to the node previous to ‗curr‘ node. As now there is

only one node in the list mark as ‗curr‘ node as ‗prev‘ node.

New/head/curr/prev

1 10 NULL

Insert a record, key=4 and value=20,

New

4 20 NULL

Compare the key value of ‗curr‘ and ‗New‘ node. If New->key > Curr->key then attach New

node to ‗curr‘ node.

prev/head New curr->next=New

prev=curr

4 20 NULL

Add a new node <7,80> then

head/prev curr New

If we insert <3,15> then we have to search for it proper position by comparing key value.

(curr->key < New->key) is false. Hence else part will get executed.

7 80 NULL

7 80 NULL

4 10 1

10 1

20

3 15

20 4 10 1

DS Using C++ Page 61

7 80 NULL

7 80 NULL

7 80 NULL

15 3 20 4

curr

1 10

head

3 15 4 20

15 3

The delete operation:

Case 1: Initially assign ‗head‘ node as ‗curr‘ node.Then ask for a key value of the node which is

to be deleted. Then starting from head node key value of each jode is cked and compared with

the desired node‘s key value. We will get node which is to be deleted in variable ‗curr‘. The

node given by variable ‗prev‘ keeps track of previous node of ‗cuu‘ node. For eg, delete node

with key value 4 then

cur

se 2:

If the node to be deleted is head node

i.e.. if(curr==head)

Then, simply make ‗head‘ node as next node and delete ‗curr‘

Hence the list becomes

head

SKIP LIST REPRESENTATION

Skip list is a variant list for the linked list. Skip lists are made up of a
series of nodes connected one after the other. Each node contains a key and value pair as well as
one or more references, or pointers, to nodes further along in the list. The number of references
each node contains is determined randomly. This gives skip lists their probabilistic nature, and
the number of references a node contains is called its node level.
There are two special nodes in the skip list one is head node which is the starting node of the
list and tail node is the last node of the list

10 1

20 4

DS Using C++ Page 62

null

NULL

NULL

1 2 3 4 5 6 7

head tail

node node

The skip list is an efficient implementation of dictionary using sorted chain. This is because
in skip list each node consists of forward references of more than one node at a time.

Eg:

Now to search any node from above given sorted chain we have to search the sorted chain

from head node by visiting each node. But this searching time can be reduced if we add one

level in every alternate node. This extra level contains the forward pointer of some node.

That means in sorted chain come nodes can holds pointers to more than one node.

If we want to search node 40 from above chain there we will require comparatively less time.

This search again can be made efficient if we add few more pointers forward references.

skip list

Node structure of skip list:

template <class K, class E>

struct skipnode

{
typedef pair<const K,E> pair_type;
pair_type element;

skipnode<K,E> **next;
skipnode(const pair_type &New_pair, int MAX):element(New_pair)
{

next=new skipnode<K,E>*[MAX];

DS Using C++ Page 63

template<class K, class E>

skipnode<K,E>* skipLst<K,E>::search(K& Key_val)
{
skipnode<K,E>* Forward_Node = header;
for(int i=level;i>=0;i--)

{
while (Forward_Node->next[i]->element.key < key_val)
Forward_Node = Forward_Node->next[i];

last[i] = Forward_Node;
}
return Forward_Node->next[0];
}

}
};

The individual node looks like this:

Key value array of pointer

Element *next

Searching:

The desired node is searched with the help of a key value.

Searching for a key within a skip list begins with starting at header at the overall list level

and moving forward in the list comparing node keys to the key_val. If the node key is less than

the key_val, the search continues moving forward at the same level. If o the other hand, the

node key is equal to or greater than the key_val, the search drops one level and continues

forward. This process continues until the desired key_val has been found if it is present in the

skip list. If it is not, the search will either continue at the end of the list or until the first key with

a value greater than the search key is found.

Insertion:

There are two tasks that should be done before insertion operation:

1. Before insertion of any node the place for this new node in the skip list is searched.

Hence before any insertion to take place the search routine executes. The last[] array in

the search routine is used to keep track of the references to the nodes where the search,

drops down one level.

2. The level for the new node is retrieved by the routine randomelevel()

DS Using C++ Page 76

UNIT -5

TREES

A Tree is a data structure in which each element is attached to one or more elements directly beneath it.

Level 0

1

2

3

Terminology

The connections between elements are called branches.

A tree has a single root, called root node, which is shown at the top of the tree. i.e. root is always at
the highest level 0.

Each node has exactly one node above it, called parent. Eg: A is the parent of B,C and D.

The nodes just below a node are called its children. ie. child nodes are one level lower than the
parent node.

 A node which does not have any child called leaf or terminal node. Eg: E, F, K, L, H, I and M are leaves.

Nodes with at least one child are called non terminal or internal nodes.
The child nodes of same parent are said to be siblings.
A path in a tree is a list of distinct nodes in which successive nodes are connected by branches in
the tree.

The length of a particular path is the number of branches in that path. The degree of a node

of a tree is the number of children of that node.
The maximum number of children a node can have is often referred to as the order of a
tree. The height or depth of a tree is the length of the longest path from root to any leaf.

1. Root: This is the unique node in the tree to which further sub trees are attached. Eg: A
Degree of the node: The total number of sub-trees attached to the node is called the degree of the
node.Eg: For node A degree is 3. For node K degree is 0

3. Leaves: These are the terminal nodes of the tree. The nodes with degree 0 are always the leaf nodes.

Eg: E, F, K, L,H, I, J

Search Trees:-Binary Search Trees, Definition, ADT, Implementation, Operations- Searching, Insertion

and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and

Searching, B-Trees, B-Tree of order m, height of a B-Tree, insertion, deletion and searching. Graphs:

Basic terminology representation of graphs, graph search methods DFS,BFS.

A

B
C D

E F G

H I J

K L

DS Using C++ Page 77

A

B

C

4. Internal nodes: The nodes other than the root node and the leaves are called the internal nodes. Eg:

B, C, D, G

5. Parent nodes: The node which is having further sub-trees(branches) is called the parent node of

those sub-trees. Eg: B is the parent node of E and F.

6. Predecessor: While displaying the tree, if some particular node occurs previous to some other node

then that node is called the predecessor of the other node. Eg: E is the predecessor of the node B.

7. Successor: The node which occurs next to some other node is a successor node. Eg: B is the

successor of E and F.

8. Level of the tree: The root node is always considered at level 0, then its adjacent children are supposed

to be at level 1 and so on. Eg: A is at level 0, B,C,D are at level 1, E,F,G,H,I,J are at level 2, K,L are at

level 3.

9. Height of the tree: The maximum level is the height of the tree. Here height of the tree is 3. The

height if the tree is also called depth of the tree.

10. Degree of tree: The maximum degree of the node is called the degree of the tree.

BINARY TREES

Binary tree is a tree in which each node has at most two children, a left child and a right child. Thus the

order of binary tree is 2.

A binary tree is either empty or consists

of a) a node called the root
b) left and right sub trees are themselves binary trees.

A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint

trees called left sub-tree and right sub- tree.
In binary tree each node will have one data field and two pointer fields for representing the

sub-branches. The degree of each node in the binary tree will be at the most two.

Types Of Binary Trees:

There are 3 types of binary trees:

1. Left skewed binary tree: If the right sub-tree is missing in every node of a tree we call it as left skewed

tree.

DS Using C++ Page 78

2. Right skewed binary tree: If the left sub-tree is missing in every node of a tree we call it is right

sub-tree.

3. Complete binary tree:

The tree in which degree of each node is at the most two is called a complete binary tree. In
a complete binary tree there is exactly one node at level 0, two nodes at level 1 and four nodes at level

l
2 and so on. So we can say that a complete binary tree depth d will contain exactly 2 nodes at each
level l, where l is from 0 to d.

Note:

n
1. A binary tree of depth n will have maximum 2 -1 nodes.
2. A complete binary tree of level l will have maximum 2l nodes at each level, where l starts from 0.
3. Any binary tree with n nodes will have at the most n+1 null branches.
4. The total number of edges in a complete binary tree with n terminal nodes are 2(n-1).

Binary Tree Representation

A binary tree can be represented mainly in 2 ways:

a) Sequential Representation

b) Linked Representation

a) Sequential Representation

The simplest way to represent binary trees in memory is the sequential representation that uses
one-dimensional array.

1) The root of binary tree is stored in the 1 st location of array
th

2) If a node is in the j
child in the location 2J+2

location of array, then its left child is in the location 2J+1 and its right

d+1
The maximum size that is required for an array to store a tree is 2 -1, where d is the depth of the tree.

A

B

C

A

B C

D E F G

DS Using C++ Page 79

Advantages of sequential representation:

The only advantage with this type of representation is that the
direct access to any node can be possible and finding the parent or left children of any particular node
is fast because of the random access.

Disadvantages of sequential representation:

1. The major disadvantage with this type of representation is wastage of memory. For example in
the skewed tree half of the array is unutilized.

2. In this type of representation the maximum depth of the tree has to be fixed. Because we have
decide the array size. If we choose the array size quite larger than the depth of the tree, then it
will be wastage of the memory. And if we coose array size lesser than the depth of the tree then
we will be unable to represent some part of the tree.

3. The insertions and deletion of any node in the tree will be costlier as other nodes has to be

adjusted at appropriate positions so that the meaning of binary tree can be preserved.
As these drawbacks are there with this sequential type of representation, we will search for more

flexible representation. So instead of array we will make use of linked list to represent the tree.

b) Linked Representation
Linked representation of trees in memory is implemented using pointers. Since each node in a

binary tree can have maximum two children, a node in a linked representation has two pointers for both
left and right child, and one information field. If a node does not have any child, the corresponding
pointer field is made NULL pointer.

In linked list each node will look like this:

Left Child Data Right Child

Advantages of linked representation:
1. This representation is superior to our array representation as there is no wastage of

memory. And so there is no need to have prior knowledge of depth of the tree.
Using dynamic memory concept one can create as much memory(nodes) as
required. By chance if some nodes are unutilized one can delete the nodes by
making the address free.

2. Insertions and deletions which are the most common operations can be done without

moving the nodes.

DS Using C++ Page 80

Disadvantages of linked representation:

1. This representation does not provide direct access to a node and special algorithms are

required.

2. This representation needs additional space in each node for storing the left and right sub-
trees.

TRAVERSING A BINARY TREE

Traversing a tree means that processing it so that each node is visited exactly once. A

binary tree can be

traversed a number of ways.The most common tree traversals are

In-order

Pre-order and

Post-order

Pre-order 1.Visit the root Root | Left | Right

 2.Traverse the left sub tree in pre-order
3.Traverse the right sub tree in pre-order.

In-order 1.Traverse the left sub tree in in-order Left | Root | Right

 2. Visit the root
3. Traverse the right sub tree in in-order.

Post-order 1.Traverse the left sub tree in post-order Left | Right | Root
 2.Traverse the right sub tree in post-order.

 3.Visit the root

A

B C

D E F G

H I J

K

The pre-order traversal is: ABDEHCFGIKJ

The in-order traversal is : DBHEAFCKIGJ

The post-order traversal is:DHEBFKIJGCA

DS Using C++ Page 81

Inorder Traversal:

rd
Print 3

A

nd th
Print 2 Print 4

B D

st

Print 1

C Print this
at the last

C-B-A-D-E is the inorder traversal i.e. first we go towards the leftmost node. i.e. C so print that node
C. Then go back to the node B and print B. Then root node A then move towards the right sub-tree
print D and finally E. Thus we are following the tracing sequence of Left|Root|Right. This type of
traversal is called inorder traversal. The basic principle is to traverse left sub-tree then root and then the
right sub-tree.

Pseudo Code:

template <class T>

void inorder(bintree<T> *temp)
{

if(temp!=NULL)

{

inorder(temp->left);

cout<<‖temp->data‖;

inorder(temp->right);
}

}

is the preorder traversal of the above fig. We are following Root|Left|Right path i.e.

data at the root node will be printed first then we move on the left sub-tree and go on

printing the data till we reach to the left most node. Print the data at that node and then

move to the right sub- tree. Follow the same principle at each sub-tree and go on

printing the data accordingly.

template <class T>

void preorder(bintree<T> *temp)

E

DS Using C++ Page 82

{

if(temp!=NULL)

{
cout<<‖temp->data‖; preorder(temp->left);
preorder(temp->right);

}

}

From figure the postorder traversal is C-D-B-E-A. In the postorder traversal we are following the

Left|Right|Root principle i.e. move to the leftmost node, if right sub-tree is there or not if not then

print the leftmost node, if right sub-tree is there move towards the right most node. The key idea

here is that at each sub-tree we are following the Left|Right|Root principle and print the data

accordingly.

Pseudo Code:

template <class T>

void postorder(bintree<T> *temp)

{
if(temp!=NULL)

{
postorder(temp->left);
postorder(temp->right);

cout<<‖temp->data‖;

}

}

BINARY SEARCH TREE

In the simple binary tree the nodes are arranged in any fashion. Depending on user‘s desire
the new nodes can be attached as a left or right child of any desired node. In such a case finding for
any node is a long cut procedure, because in that case we have to search the entire tree. And thus
the searching time complexity will get increased unnecessarily. So to make the searching

algorithm faster in a binary tree we will go for building the binary search tree. The binary search
tree is based on the binary search algorithm. While creating the binary search tree the data is
systematically arranged. That means values at left sub-tree < root node value < right sub-tree

values.

DS Using C++ Page 83

Operations On Binary Search Tree:

The basic operations which can be performed on binary search tree are.
1. Insertion of a node in binary search tree.

2. Deletion of a node from binary search tree.

3. Searching for a particular node in binary search tree.

Insertion of a node in binary search tree.

While inserting any node in binary search tree, look for its appropriate position in the binary search

tree. We start comparing this new node with each node of the tree. If the value of the node which is

to be inserted is greater than the value of the current node we move on to the right sub-branch

otherwise we move on to the left sub-branch. As soon as the appropriate position is found we

attach this new node as left or right child appropriately.

Before Insertion

In the above fig, if we wan to insert 23. Then we will start comparing 23 with value of root node

i.e. 10. As 23 is greater than 10, we will move on right sub-tree. Now we will compare 23 with 20

and move right, compare 23 with 22 and move right. Now compare 23 with 24 but it is less than

24. We will move on left branch of 24. But as there is node as left child of 24, we can attach 23 as

left child of 24.

DS Using C++ Page 84

Deletion of a node from binary search tree.

For deletion of any node from binary search tree there are three which are possible.

i. Deletion of leaf node.
ii. Deletion of a node having one child.
iii. Deletion of a node having two children.

Deletion of leaf node.

This is the simplest deletion, in which we set the left or right pointer of parent node as NULL.

10

7 15

Before deletion

5 9 12 18

From the above fig, we want to delete the node having value 5 then we will set left pointer of its parent

node as NULL. That is left pointer of node having value 7 is set to NULL.

DS Using C++ Page 85

Deletion of a node having one child.

To explain this kind of deletion, consider a tree as given below.

If we want to delete the node 15, then we

will simply copy node 18 at place of 16

and then set the node free

Deletion of a node having two children.

Consider a tree as given below.

DS Using C++ Page 86

Let us consider that we want to delete node having value 7. We will then find out the inorder successor

of node 7. We will then find out the inorder successor of node 7. The inorder successor will be simply
copied at location of node 7.

That means copy 8 at the position where value of node is 7. Set left pointer of 9 as NULL. This

completes the deletion procedure.

Searching for a node in binary search tree.

In searching, the node which we want to search is called a key node. The key node will be compared
with each node starting from root node if value of key node is greater than current node then we
search for it on right sub branch otherwise on left sub branch. If we reach to leaf node and still we do
not get the value of key node then we declare ―node is not present in the tree‖.

DS Using C++ Page 87

In the above tree, if we want to search for value 9. Then we will compare 9 with root node 10. As 9
is less than 10 we will search on left sub branch. Now compare 9 with 5, but 9 is greater than 5. So
we will move on right sub tree. Now compare 9 with 8 but 9 is greater than 8 we will move on right
sub branch. As the node we will get holds the value 9. Thus the desired node can be searched.

AVL TREES

Adelsion Velski and Lendis in 1962 introduced binary tree structure that is balanced with
respect to height of sub trees. The tree can be made balanced and because of this retrieval
of any node can be done in Ο(log n) times, where n is total number of nodes. From the name of these
scientists the tree is called AVL tree.

Definition:

An empty tree is height balanced if T is a non empty binary tree with TL and TR as

its left and right sub trees. The T is height balanced if and only if

i. TL and TR are height balanced.
ii. hL-hR <= 1 where hL and hR are heights of TL and TR.

The idea of balancing a tree is obtained by calculating the balance factor of a tree.

Definition of Balance Factor:

The balance factor BF(T) of a node in binary tree is defined to be hL-hR where hL and

hR are heights of left and right sub trees of T.

For any node in AVL tree the balance factor i.e. BF(T) is -1, 0 or +1.

DS Using C++ Page 88

Height of AVL Tree:

Theorem: The height of AVL tree with n elements (nodes) is O(log n).

Proof: Let an AVL tree with n nodes in it. Nh be the minimum number of nodes in an AVL tree of

height h.

In worst case, one sub tree may have height h-1 and other sub tree may have height h-2. And both these
sub trees are AVL trees. Since for every node in AVL tree the height of left and right sub trees differ

by at most 1.

Hence

N = N
h h-1

+N +1
h-2

Where Nh denotes the minimum number of nodes in an AVL tree of height h.

N0=0 N1=2

We can also write it as

N > Nh = Nh-1+Nh-2+1

> 2Nh-2

> 4Nh-4
.
.

> 2iNh-2i

If value of h is even, let i = h/2-1

Then equation becomes

N > 2h/2-1N2

= N > 2(h-1)/2x4 (N2 = 4)

= O(log N)

If value of h is odd, let I = (h-1)/2 then equation becomes

N > 2(h-1)/2 N1

N > 2(h-1)/2 x 1
H = O(log N)

This proves that height of AVL tree is always O(log N). Hence search, insertion and deletion can

be carried out in logarithmic time.

DS Using C++ Page 89

Representation of AVL Tree

The AVL tree follows the property of binary search tree. In fact AVL trees are

basically binary search trees with balance factors as -1, 0, or +1.

After insertion of any node in an AVL tree if the balance factor of any node
becomes other than -1, 0, or +1 then it is said that AVL property is violated. Then
we have to restore the destroyed balance condition. The balance factor is denoted at

right top corner inside the node.

After insertion of a new node if balance condition gets destroyed, then the nodes on that path(new node

insertion point to root) needs to be readjusted. That means only the affected sub tree is to be rebalanced.

The rebalancing should be such that entire tree should satisfy AVL property.

In above given example-

DS Using C++ Page 90

Insertion of a node.

There are four different cases when rebalancing is required after insertion of new node.

1. An insertion of new node into left sub tree of left child. (LL).

2. An insertion of new node into right sub tree of left child. (LR).

3. An insertion of new node into left sub tree of right child. (RL).

4. An insertion of new node into right sub tree of right child.(RR).

Some modifications done on AVL tree in order to rebalance it is called rotations of AVL tree

There are two types of rotations:

Single rotation Double rotation

Left-Left(LL rotation) Left-Right(LR rotation)

Right-Right(RR rotation) Right-Left(RL rotation)

Insertion Algorithm:

1. Insert a new node as new leaf just as an ordinary binary search tree.

2. Now trace the path from insertion point(new node inserted as leaf) towards root. For each node
‗n‘ encountered, check if heights of left (n) and right (n) differ by at most 1. a)If yes, move

towards parent (n).

b)Otherwise restructure by doing either a single rotation or a double rotation.

Thus once we perform a rotation at node ‗n‘ we do not require to perform any rotation at any

ancestor on ‗n‘.

DS Using C++ Page 91

When node ‗1‘ gets inserted as a left child of node ‗C‘ then AVL property gets destroyed i.e.

node A has balance factor +2.

The LL rotation has to be applied to rebalance the nodes.

2. RR rotation:

When node ‗4‘ gets attached as right child of node ‗C‘ then node ‗A‘ gets unbalanced. The

rotation which needs to be applied is RR rotation as shown in fig.

DS Using C++ Page 92

When node ‗3‘ is attached as a right child of node ‗C‘ then unbalancing occurs because of LR.

Hence LR rotation needs to be applied.

When node ‗2‘ is attached as a left child of node ‗C‘ then node ‗A‘ gets unbalanced as its

balance factor becomes -2. Then RL rotation needs to be applied to rebalance the AVL tree.

Example:

Insert 1, 25, 28, 12 in the following AVL tree.

DS Using C++ Page 93

Insert 1

To insert node ‗1‘ we have to attach it as a left child of ‗2‘. This will unbalance the tree as follows.

We will apply LL rotation to preserve AVL property of it.

Insert 25

We will attach 25 as a right child of 18. No balancing is required as entire tree preserves the AVL

property

DS Using C++ Page 94

Insert 28

The node ‗28‘ is attached as a right child of 25. RR rotation is required to rebalance.

DS Using C++ Page 95

Insert 12

To rebalance the tree we have to apply LR rotation.

DS Using C++ Page 96

Deletion:

Even after deletion of any particular node from AVL tree, the tree has to be restructured in order to

preserve AVL property. And thereby various rotations need to be applied.

Algorithm for deletion:

The deletion algorithm is more complex than insertion algorithm.

1. Search the node which is to be deleted.

2. a) If the node to be deleted is a leaf node then simply make it NULL to remove.
b) If the node to be deleted is not a leaf node i.e. node may have one or two children, then the
node must be swapped with its in order successor. Once the node is swapped, we can remove
this node.

3. Now we have to traverse back up the path towards root, checking the balance factor of every
node along the path. If we encounter unbalancing in some sub tree

then balance that sub tree using appropriate single or double rotations. The deletion

algorithm takes O(log n) time to delete any node.

DS Using C++ Page 97

The tree becomes

DS Using C++ Page 98

Searching:

The searching of a node in an AVL tree is very simple. As AVL tree is basically binary search tree, the
algorithm used for searching a node from binary search tree is the same one is used to search a node
from AVL tree.

The searching of a node from AVL tree takes O(log n) time.

BTREES

Multi-way trees are tree data structures with more than two branches at a node. The data

structures of m-way search trees, B trees and Tries belong to this category of tree

structures.

AVL search trees are height balanced versions of binary search trees, provide efficient

retrievals and storage operations. The complexity of insert, delete and search operations on

AVL search trees id O(log n).

Applications such as File indexing where the entries in an index may be very large,

maintaining the index as m-way search trees provides a better option than AVL search trees

which are but only balanced binary search trees.

While binary search trees are two-way search trees, m-way search trees are extended binary

search trees and hence provide efficient retrievals.

B trees are height balanced versions of m-way search trees and they do not recommend

representation of keys with varying sizes.

Tries are tree based data structures that support keys with varying sizes.

DS Using C++ Page 99

F K O B tree of order 4

Level 1

S T X Y Z

Level
3

N M D C G

Definition:

A B tree of order m is an m-way search tree and hence may be empty. If non empty, then the

following properties are satisfied on its extended tree representation:

i. The root node must have at least two child nodes and at most m child nodes.
ii. All internal nodes other than the root node must have at least |m/2 | non empty child nodes and at most

m non empty child nodes.
iii. The number of keys in each internal node is one less than its number of child nodes and these keys

partition the keys of the tree into sub trees.

iv. All external nodes are at the same level.

v.

Example:

P Q W

Insertion

For example construct a B-tree of order 5 using following numbers. 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12,

20, 26, 4, 16, 18, 24, 25, 19

The order 5 means at the most 4 keys are allowed. The internal node should have at least 3 non empty

children and each leaf node must contain at least 2 keys.

Step 1: Insert 3, 14, 7, 1

1 3 7 14

.

DS Using C++ Page 100

7

1 3 5

7 13

14 5 3 1

8 11

7

14 8 3 1

17

Step 2: Insert 8, Since the node is full split the node at medium 1, 3, 7, 8, 14

Step 3: Insert 5, 11, 17 which can be easily inserted in a B-tree.

8 11 14 17

Step 4: Now insert 13. But if we insert 13 then the leaf node will have 5 keys which is not allowed.

Hence 8,

11, 13, 14, 17 is split and medium node 13 is moved up.

DS Using C++ Page 101

7 13

7 13 20

26 23 17 14

1 3 5 6

8 11 12

14 17 20 23

1 3 5 6

8 11 12

Step 5: Now insert 6, 23, 12, 20 without any split.

Step 6: The 26 is inserted to the right most leaf node. Hence 14, 17, 20, 23, 26 the node is split and 20 will

be moved up.

DS Using C++ Page 102

6 5 3 1 8 11 12

14 16 17 18

23 24 25 26

8 11 12 1 4 16

23 24 25 26

8 11 12

23 24 25 26

4 20

1 6 18

7 20

1 6 1 4 18

Step 7: Insertion of node 4 causes left most node to split. The 1, 3, 4, 5, 6 causes key 4 to move up.

Then insert 16, 18, 24, 25.

4 7 13 20

Step 8: Finally insert 19. Then 4, 7, 13, 19, 20 needs to be split. The median 13 will be moved up

to from a root node.

The tree then will be -

13

Thus the B tree is constructed. 13

Deletion

Consider a B-tree

19 16 5 3

17 4

19 5 3

17 7

DS Using C++ Page 103

Delete 8, then it is very simple.

13

19 18 16 1 4 12 11 6 5 3 1

20 17 7 4

13

19 18 16 1 4 12 11 6 5 3 1

23 17 7 4

23 24 25 26

Now we will delete 20, the 20 is not in a leaf node so we will find its successor which is 23, Hence

23 will be moved up to replace 20.

24 25 26

Next we will delete 18. Deletion of 18 from the corresponding node causes the node with only one
key, which is not desired (as per rule 4) in B-tree of order 5. The sibling node to immediate right
has an extra key. In such a case we can borrow a key from parent and move spare key of sibling up.

13

DS Using C++ Page 104

13

26 25 23 19 16 1 4 12 11

24 17 7

Now delete 5. But deletion of 5 is not easy. The first thing is 5 is from leaf node. Secondly this leaf

node has no extra keys nor siblings to immediate left or right. In such a situation we can combine this

node with one of the siblings. That means remove 5 and combine 6 with the node 1, 3. To make the

tree balanced we have to move parent‘s key down. Hence we will move 4 down as 4 is between 1, 3,

and 6. The tree will be-

1 3 4 6

But again internal node of 7 contains only one key which not allowed in B-tree. We then will try to borrow
a key from sibling. But sibling 17, 24 has no spare key. Hence we can do is that, combine 7 with 13 and
17, 24. Hence the B-tree will be

26 25 23 19 16 1 4

24 17

12 11 6 5 3 1

7 4

DS Using C++ Page 105

13

4 7
17

20

19 18 16 14 6 5 3 1 8 11 12

23 24 25 26

Searching

The search operation on B-tree is similar to a search to a search on binary search tree. Instead of choosing
between a left and right child as in binary tree, B-tree makes an m-way choice. Consider a B-tree as given
below.

If we want to search 11 then

i. 11 < 13 ; Hence search left node

ii. 11 > 7 ; Hence right most node

iii. 11 > 8 ; move in second block

iv. node 11 is found

The running time of search operation depends upon the height of the tree. It is O(log n).

Height of B-tree

The maximum height of B-tree gives an upper bound on number of disk access. The maximum number

of keys in a B-tree of order 2m and depth h is

26 25 23 19 16 14 12 11 1 3 4 6

DS Using C++ Page 106

2 h-1
1 + 2m + 2m(m+1) + 2m(m+1) + . . .+ 2m(m+1)

h

= 1 + ∑ 2m(m+1)

i=1

i-1

The maximum height of B-tree with n keys

log m+1 n = O(log n)

2m

Terminology of Graph
Graphs:-

A graph G is a discrete structure consisting of nodes (called vertices) and lines joining the

nodes (called edges). Two vertices are adjacent to each other if they are joint by an edge. The

edge joining the two vertices is said to be an edge incident with them. We use V (G) and E(G)

to denote the set of vertices and edges of G respectively.

Euler Circuit and Euler Path

An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G
is a simple path containing every edge of G.

DS Using C++ Page 107

Graph Representations

Graph data structure is represented using following representations...

1. Adjacency Matrix

2. Incidence Matrix

3. Adj

acency

List

Adjacency

Matrix
In this representation, graph can be represented using a matrix of size total number of vertices

by total number of vertices. That means if a graph with 4 vertices can be represented using a
matrix of 4X4 class. In this matrix, rows and columns both represents vertices. This matrix is

filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to column vertex

and 0 represents there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation...

Directed graph representation...

Incidence Matrix
In this representation, graph can be represented using a matrix of size total number

of vertices by total number of edges. That means if a graph with 4 vertices and 6
edges can be represented using a matrix of 4X6 class. In this matrix, rows

represents vertices and columns represents edges. This matrix is filled with either 0

or 1 or -1. Here, 0 represents row edge is not connected to column vertex, 1

represents row edge is connected as outgoing edge to column vertex and -1

represents row edge is connected as incoming edge to column vertex.

For example, consider the following directed graph representation...

DS Using C++ Page 108

Adjacency List
In this representation, every vertex of graph contains list of its adjacent

vertices.

For example, consider the following directed graph representation implemented

using linked list...

This representation can also be implemented using array as follows..

Graph traversals

Graph traversal means visiting every vertex and edge exactly once in a well-defined order.

While using certain graph algorithms, you must ensure that each vertex of the graph is visited

DS Using C++ Page 109

exactly once. The order in which the vertices are visited are important and may depend upon

the algorithm or question that you are solving.

During a traversal, it is important that you track which vertices have been visited. The most

common way of tracking vertices is to mark them.

Depth First Search (DFS)

The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves

exhaustive searches of all the nodes by going ahead, if possible, else by backtracking.

This recursive nature of DFS can be implemented using stacks. The basic idea is as follows:

Pick a starting node and push all its adjacent nodes into a stack.

Pop a node from stack to select the next node to visit and push all its adjacent nodes into a
stack.

Repeat this process until the stack is empty. However, ensure that the nodes that are visited

are marked. This will prevent you from visiting the same node more than once. If you do not

mark the nodes that are visited and you visit the same node more than once, you may end up

in an infinite loop.

DFS-iterative (G, s): //Where G is graph and s is source vertex

let S be stack

S.push(s) //Inserting s in stack

mark s as visited.

while (S is not empty):

//Pop a vertex from stack to visit next

v = S.top() S.pop()

//Push all the neighbours of v in stack that
are not visited for all neighbours w of v in

Graph G:

if w is not visited : S.push(w) mark w as visited

DFS-recursive(G, s):

mark s as visited

for all neighbours w of s in Graph G:

if w is not visited:

DFS-recursive(G, w)

Breadth First Search (BFS);

There are many ways to traverse graphs. BFS is the most commonly used approach.BFS is a

traversing algorithm where you should start traversing from a selected node (source or

starting node) and traverse the graph layerwise thus exploring the neighbour nodes (nodes
which are directly connected to source node). You must then move towards the next-level

neighbour nodes.As the name BFS suggests, you are required to traverse the graph

breadthwise as follows:

1.First move horizontally and visit all the nodes of the current layer
2.Move to the next layer.

	ALGORITHMS
	Development Of An Algorithm
	PERFORMANCE ANALYSIS
	Asymptotic Notations:
	Big Oh Notation
	Definition:
	Omega Notation:-
	Definition: (1)
	Theta Notation:-
	Definition: (2)
	How to compute time complexity
	Best Case, Worst Case and Average Case Analysis
	Algorithm for Linear search
	SORTING
	BUBBLE SORT
	ALGORITHM:
	SELECTION SORT

	INSERTION SORT
	ALGORITHM:

	QUICK SORT
	MERGE SORT
	Conceptually, merge sort works as follows:

	HEAP SORT
	Abstract Data Type
	The linked allocation has the following draw backs:
	Linked list are of 3 types:
	SINGLY LINKED LIST
	Structure of a node: Method -1:
	Method -2:
	case 1:Insert at the beginning
	After insertion:
	Code for insert End:-
	case 3: Insert at a position
	Code for inserting a node at a given position:-
	CASE 3. Delete a node at a given position
	DOUBLY LINKED LIST
	Implementation of node using structure Method -1:
	Implementation of node using class Method -2:
	case 1:Insert at the beginning (1)
	Code for insert front:-
	Code to insert a node at End:-
	Code to insert a node at a position
	code for deleting a node at front
	Case 2. Delete a node at end of the list
	CASE 3. Delete a node at a given position (1)
	CIRCULARLY LINKED LIST
	Advantages:
	The general terminology associated with the stack is as follows:
	Pushing items onto the stack:
	Popping an element from stack:
	Applications of Stack:
	QUEUE ADT
	Representing a Queue:
	Operations on Queue:
	Queue empty
	CIRCULAR QUEUE
	Circular Queue empty or underflow condition is
	Deletion from Circular Queue:
	DEQUEUE
	TREES:
	Terminology
	BINARY TREES
	A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint trees called left sub-tree and right sub-tree.
	3. Complete binary tree:
	Note:
	Binary Tree Representation
	a) Sequential Representation
	Advantages of sequential representation:
	Disadvantages of sequential representation:
	b) Linked Representation
	Advantages of linked representation:
	Disadvantages of linked representation:
	TRAVERSING A BINARY TREE
	Inorder Traversal:
	Preorder Traversal
	Postorder Traversal:

	HEAPS
	HEAP SORT
	MULTIWAY MERGE:
	Main memory sort
	Merging

	UNIT -4
	DICTIONARIES:
	cur
	head

	Terminology
	BINARY TREES
	Types Of Binary Trees:
	n
	d+1
	rd
	nd th
	st
	BINARY SEARCH TREE
	Insertion of a node in binary search tree.

	Height of AVL Tree:
	+N +1
	Representation of AVL Tree
	Some modifications done on AVL tree in order to rebalance it is called rotations of AVL tree
	Insertion Algorithm:

	Deletion:
	Searching:
	2 h-1

	Graph Representations
	Breadth First Search (BFS);

